
Structures, Год журнала: 2024, Номер 70, С. 107716 - 107716
Опубликована: Ноя. 15, 2024
Язык: Английский
Structures, Год журнала: 2024, Номер 70, С. 107716 - 107716
Опубликована: Ноя. 15, 2024
Язык: Английский
Structures, Год журнала: 2025, Номер 73, С. 108467 - 108467
Опубликована: Фев. 17, 2025
Язык: Английский
Процитировано
1Journal of the Taiwan Institute of Chemical Engineers, Год журнала: 2025, Номер 171, С. 106045 - 106045
Опубликована: Фев. 27, 2025
Язык: Английский
Процитировано
0SoftwareX, Год журнала: 2025, Номер 30, С. 102122 - 102122
Опубликована: Март 7, 2025
Язык: Английский
Процитировано
0Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown
Опубликована: Апрель 27, 2025
Язык: Английский
Процитировано
0Engineering Structures, Год журнала: 2025, Номер 336, С. 120448 - 120448
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Май 13, 2025
Язык: Английский
Процитировано
0Engineering Structures, Год журнала: 2025, Номер 340, С. 120721 - 120721
Опубликована: Июнь 5, 2025
Язык: Английский
Процитировано
0Earthquake Engineering & Structural Dynamics, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 20, 2024
Abstract Machine learning (ML) has recently been used as an efficient surrogate to estimate different steps of performance‐based earthquake engineering (PBEE), from dynamic structural analysis fragility and loss assessments. However, due the varied data, models, features in existing literature, relative efficiency ML models across PBEE remains unclear. Additionally, black‐box nature advanced algorithms limits their ability provide design‐oriented insights, hindering broader application PBEE‐based design. This study provides a comprehensive comparison accuracy explainability using consistent database 621 steel moment frames with varying designs geometry. Eight were careful training workflow comprising feature selection, hyperparameter tuning, cross‐validation, model inference. The sensitivity representative outputs—maximum responses, median fragility, expected annual loss—was assessed statistical measures. In addition, best for each step was examined explore relationship between design parameters corresponding output. results show that while can reasonably map all outputs, higher drift fragilities, component‐based metrics. optimal algorithm remained same steps, where support vector machines random forests provided highest average R 2 0.93 0.91 over outputs on test set. Although selected sets algorithms, height, number stories, fundamental period, minimum beams’ inertia influential both notably affected outputs.
Язык: Английский
Процитировано
3Structures, Год журнала: 2024, Номер 71, С. 108036 - 108036
Опубликована: Дек. 26, 2024
Язык: Английский
Процитировано
2Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер unknown
Опубликована: Дек. 11, 2024
Язык: Английский
Процитировано
0