Artificial intelligence-driven cybersecurity system for internet of things using self-attention deep learning and metaheuristic algorithms DOI Creative Commons

Fahad Alblehai

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 16, 2025

Язык: Английский

Review of filtering based feature selection for Botnet detection in the Internet of Things DOI Creative Commons
Mohamed Saied, Shawkat K. Guirguis, Magda M. Madbouly

и другие.

Artificial Intelligence Review, Год журнала: 2025, Номер 58(4)

Опубликована: Янв. 31, 2025

Abstract Botnets are a major security threat in the Internet of Things (IoT), posing significant risks to user privacy, network availability, and integrity IoT devices. With increasing availability large datasets that contain hundreds or even thousands variables, selecting right set features can be challenging task. Feature selection is critical step developing effective machine learning-based botnet detection systems, as it enables subset most relevant for detection. This paper provides comprehensive review filtering based feature techniques IoT. It examines range evaluates their effectiveness addressing challenges limitations aims identify gaps literature areas future research, discuss broader implications findings field valuable insights guidance researchers practitioners working on IoT, highlights importance robust reliable systems.

Язык: Английский

Процитировано

0

Artificial intelligence-driven cybersecurity system for internet of things using self-attention deep learning and metaheuristic algorithms DOI Creative Commons

Fahad Alblehai

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 16, 2025

Язык: Английский

Процитировано

0