Biomass and Bioenergy, Год журнала: 2025, Номер 200, С. 108054 - 108054
Опубликована: Июнь 3, 2025
Язык: Английский
Biomass and Bioenergy, Год журнала: 2025, Номер 200, С. 108054 - 108054
Опубликована: Июнь 3, 2025
Язык: Английский
Journal of the Energy Institute, Год журнала: 2025, Номер 119, С. 101973 - 101973
Опубликована: Янв. 5, 2025
Язык: Английский
Процитировано
5Journal of Analytical and Applied Pyrolysis, Год журнала: 2024, Номер 179, С. 106486 - 106486
Опубликована: Март 30, 2024
Bio-oil produced through pyrolysis of lignocellulosic biomass has recently received significant attention due to its possible uses as a second-generation biofuel. The yield and characteristics bio-oil are affected by reaction conditions the type feedstock that is used. Recently, machine learning (ML) techniques have been widely employed forecast performance bi-oil. In this study, comprehensive review ML research on carried out. Regression methods were most frequently build prediction models top five for random forest, artificial neural network, gradient boosting, support vector regression, linear regression. results developed quite consistent with experiment results. However, studies data had limitations such used restricted data, extraction features using their own knowledge, limited algorithms. We highlighted challenges potential cutting-edge in production.
Язык: Английский
Процитировано
12Environmental Chemistry Letters, Год журнала: 2024, Номер unknown
Опубликована: Сен. 5, 2024
Язык: Английский
Процитировано
11Environmental Research, Год журнала: 2023, Номер 244, С. 117815 - 117815
Опубликована: Дек. 3, 2023
Язык: Английский
Процитировано
21Fermentation, Год журнала: 2023, Номер 9(6), С. 529 - 529
Опубликована: Май 29, 2023
Concerns about rising energy demand, fossil fuel depletion, and global warming have increased interest in developing utilizing alternate renewable sources. Among the available resources, microalgae biomass, a third-generation feedstock, is promising for production due to its rich biochemical composition, metabolic elasticity, ability produce numerous bioenergy products, including biomethane, biohydrogen, bioethanol. However, true potential of biomass future economy yet be realized. This review provides comprehensive overview various conversion processes (anaerobic digestion, direct biophotolysis, indirect photo fermentation, dark microalgae-catalyzed traditional alcoholic fermentation by ethanologenic microorganisms) that could adapted transform into different products. Recent advances are compiled critically analyzed, their limitations terms process viability, efficacy, scalability, economic environmental sustainability highlighted. Based on current research stage technological development, biomethane from anaerobic digestion bioethanol identified as methods commercialization microalgae-based bioenergy. significant challenges these technologies’ remain, high costs low recovery efficiency. Future should focus reducing costs, an integrated biorefinery approach, effectively artificial intelligence tools optimization scale-up solve accelerate development
Язык: Английский
Процитировано
20Journal of Analytical and Applied Pyrolysis, Год журнала: 2023, Номер 172, С. 105984 - 105984
Опубликована: Апрель 28, 2023
Язык: Английский
Процитировано
19Journal of environmental chemical engineering, Год журнала: 2023, Номер 11(6), С. 111314 - 111314
Опубликована: Окт. 27, 2023
Язык: Английский
Процитировано
18Chemical Engineering Journal Advances, Год журнала: 2024, Номер 19, С. 100620 - 100620
Опубликована: Июнь 26, 2024
Torrefied biomass is a vital green energy source with applications in circular economies, addressing agricultural residue and rising demands. In this study, ML models were used to predict durability (%) mass loss (%). Firstly, data was collected preprocessed, its distribution correlation analyzed. Gaussian Process Regression (GPR) Ensemble Learning Trees (ELT) then trained tested on 80 % 20 of the data, respectively. Both machine learning underwent optimization through Genetic Algorithm (GA) Particle Swarm Optimization (PSO) for feature selection hyperparameter tuning. GPR-PSO demonstrates excellent accuracy predicting (%), achieving training R2 score 0.9469 an RMSE value 0.0785. GPR-GA exhibits exceptional performance 1 9.7373e-05. The temperature duration during torrefaction are crucial variables that line conclusions drawn from previous studies. GPR ELT effectively optimize torrefied quality, leading enhanced density, mechanical properties, grindability, storage stability. Additionally, they contribute sustainable agriculture by reducing carbon emissions, improving cost-effectiveness, aiding design development pelletizers. This not only increases density grindability but also enhances nutrient delivery efficiency, water retention, reduces footprint. Consequently, these outcomes support biodiversity promote agricultural, ecosystem, environmental practices.
Язык: Английский
Процитировано
9Algal Research, Год журнала: 2025, Номер unknown, С. 103935 - 103935
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Process Safety and Environmental Protection, Год журнала: 2023, Номер 177, С. 1403 - 1414
Опубликована: Авг. 1, 2023
Язык: Английский
Процитировано
16