
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 2, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 2, 2024
Язык: Английский
Remote Sensing, Год журнала: 2024, Номер 16(5), С. 734 - 734
Опубликована: Фев. 20, 2024
Global food security and nutrition is suffering from unprecedented challenges. To reach a world without hunger malnutrition by implementing precision agriculture, satellite remote sensing plays an increasingly important role in field crop monitoring management. Alfalfa, global widely distributed forage crop, requires more attention to predict its yield quality traits data since it supports the livestock industry. Meanwhile, there are some key issues that remain unknown regarding alfalfa optical synthetic aperture radar (SAR) data. Using Sentinel-1 Sentinel-2 data, this study developed, compared, further integrated new optical- SAR-based models for improving prediction, i.e., crude protein (CP), acid detergent fiber (ADF), neutral (NDF), digestibility (NDFD). better understand physical mechanism of sensing, unified hybrid leaf area index (LAI) retrieval scheme was developed coupling PROSAIL radiative transfer model, spectral response function desired satellite, random forest (RF) denoted as scalable satellite-based LAI framework. Compared vegetation indices (VIs) only capture canopy information, results indicate had highest correlation (r = 0.701) with due capacity delivering structure characteristics. For traits, chlorophyll VIs presented higher correlations than LAI. On other hand, did not provide significant additional contribution predicting parameters RF prediction model using inputs. In addition, optical-based outperformed yield, CP, NDFD, while showed performance ADF NDF. The integration SAR contributed accuracy either or separately. traditional embedded approach, combination multisource heterogeneous satellites optimized multiple linear regression (yield: R2 0.846 RMSE 0.0354 kg/m2; CP: 0.636 1.57%; ADF: 0.559 1.926%; NDF: 0.58 2.097%; NDFD: 0.679 2.426%). Overall, provides insights into large-scale fields satellites.
Язык: Английский
Процитировано
10International Journal of Remote Sensing, Год журнала: 2024, Номер unknown, С. 1 - 76
Опубликована: Дек. 11, 2024
Numerous remote sensing (RS) systems currently collect data about Earth and its environments. However, each system provides limited in terms of spatial resolution, spectral information, other parameters. Given technological constraints, combining from diverse sources can effectively enhance RS solutions through enrichment. Many studies have investigated the fusion acquired different sensors platforms. This paper a comprehensive review research on multi-platform -sensor fusion, encompassing visible-light images, multi/hyper-spectral RADAR LiDAR point clouds, thermal spectrometry samples, geophysical data. An analysis over 950 papers revealed that feature-level multi-sensor was most commonly employed technique, surpassing pixel- decision-level approaches. Moreover, satellite more prevalent than manned unmanned aerial vehicles. The integration initially gained traction applications such as precision agriculture before expanding to land use cover mapping. addresses previously overlooked issues presents framework facilitate seamless Guidelines for this include ensuring same acquisition time, co-registration, true orthorectification, consistent resolution or information content, radiometric consistency, wavelength band coverage.
Язык: Английский
Процитировано
8Wild, Год журнала: 2025, Номер 2(1), С. 7 - 7
Опубликована: Март 11, 2025
Multi-source remote sensing fusion and machine learning are effective tools for forest monitoring. This study aimed to analyze various techniques, their application with algorithms, assessment in estimating type aboveground biomass (AGB). A keyword search across Web of Science, Science Direct, Google Scholar yielded 920 articles. After rigorous screening, 72 relevant articles were analyzed. Results showed a growing trend optical radar fusion, notable use hyperspectral images, LiDAR, field measurements fusion-based Machine particularly Random Forest (RF), Support Vector (SVM), K-Nearest Neighbor (KNN), leverage features from fused sources, proper variable selection enhancing accuracy. Standard evaluation metrics include Mean Absolute Error (MAE), Root Squared (RMSE), Overall Accuracy (OA), User’s (UA), Producer’s (PA), confusion matrix, Kappa coefficient. review provides comprehensive overview prevalent data by synthesizing current research highlighting fusion’s potential improve monitoring The underscores the importance spectral, topographic, textural, environmental variables, sensor frequency, key gaps standardized protocols exploration multi-temporal dynamic change
Язык: Английский
Процитировано
1Computers and Electronics in Agriculture, Год журнала: 2025, Номер 234, С. 110305 - 110305
Опубликована: Март 19, 2025
Язык: Английский
Процитировано
1Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102982 - 102982
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
4Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Ноя. 8, 2024
Enhancing and strengthening food production capacity has always been a top priority in agricultural research, serving as cornerstone for ensuring national security stable economic development. This study, based on panel data spanning from 2011 to 2021 across 30 provinces China, delves into the mechanism through which digital economy impacts capacity. Employing double fixed effect model, mediation threshold we uncover several key findings: The significantly boosts capacity, with robustness tests affirming reliability of our results. Mechanism analysis reveals that enhances by elevating total factor productivity bolstering resilience. underscores urbanization levels exhibit single-threshold impact, wherein influence intensifies upon crossing this threshold. Heterogeneity central primary grain-producing regions, while its impact is comparatively weaker eastern western well non-primary areas. In summary, research sheds light pivotal role augmenting offering valuable insights regional variations thresholds China.
Язык: Английский
Процитировано
3International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2025, Номер 136, С. 104399 - 104399
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Field Crops Research, Год журнала: 2025, Номер 326, С. 109857 - 109857
Опубликована: Март 19, 2025
Язык: Английский
Процитировано
0Smart innovation, systems and technologies, Год журнала: 2025, Номер unknown, С. 173 - 185
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Computers and Electronics in Agriculture, Год журнала: 2025, Номер 236, С. 110497 - 110497
Опубликована: Май 9, 2025
Язык: Английский
Процитировано
0