IEEE Geoscience and Remote Sensing Letters, Год журнала: 2024, Номер 21, С. 1 - 5
Опубликована: Янв. 1, 2024
Язык: Английский
IEEE Geoscience and Remote Sensing Letters, Год журнала: 2024, Номер 21, С. 1 - 5
Опубликована: Янв. 1, 2024
Язык: Английский
Water, Год журнала: 2025, Номер 17(3), С. 396 - 396
Опубликована: Янв. 31, 2025
Floods have significant impacts on economic development and cause the loss of both lives property, posing a serious threat to social stability. Effectively identifying evolution patterns floods could enhance role flood monitoring in disaster prevention mitigation. Firstly, this study, we utilized low-cost multi-source multi-temporal remote sensing construct an HIS-NSCT fusion model based SAR optical order obtain best image. Secondly, constructed regional growth accurately identify floods. Finally, extracted analyzed extent, depth, area farmland submerged by flood. The results indicated that maintained spatial characteristics spectral information images well, as determined through subjective objective multi-index evaluations. Moreover, preserve detailed features water body edges, eliminate misclassifications caused terrain shadows, enable effective extraction bodies. Based Poyang Lake, incorporating precipitation, elevation, cultivated land, other data, accurate identification inundation range, inundated land can be achieved. This study provides data technical support for identification, control, relief decision-making, among aspects.
Язык: Английский
Процитировано
0International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2025, Номер 136, С. 104409 - 104409
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Remote Sensing in Earth Systems Sciences, Год журнала: 2025, Номер unknown
Опубликована: Март 12, 2025
Язык: Английский
Процитировано
0International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2025, Номер 139, С. 104550 - 104550
Опубликована: Апрель 19, 2025
Язык: Английский
Процитировано
0Remote Sensing, Год журнала: 2025, Номер 17(9), С. 1481 - 1481
Опубликована: Апрель 22, 2025
The automatic extraction of buildings from remote sensing images is crucial for various applications such as urban planning and management, emergency response, map making updating. In recent years, deep learning (DL) methods have made significant progress in this field. However, due to the complex diverse structures their interconnections, accuracy extracted remains insufficient high-precision maps navigation. To address issue enhancing building boundary extraction, we propose a modified instance segmentation model, AP-PointRend (Adaptive Parameter-PointRend), improve performance extraction. Specifically, model can adaptively select number iterations points based on size large buildings. By introducing regularization constraints, discrete small patches are removed, preserving boundaries better during process. We also designed an image merging method eliminate seams, ensure recall rate, accuracy. Vaihingen WHU benchmark datasets were used evaluate method. experimental results showed that proposed approach generated compared with other state-of-the-art methods.
Язык: Английский
Процитировано
0Journal of Environmental Management, Год журнала: 2025, Номер 384, С. 125542 - 125542
Опубликована: Май 1, 2025
Flooding has increasingly significant adverse effects on global food security, and there is a lack of framework to effectively integrate remote sensing with survey data for accurate damage recovery assessment. Also, optical satellite images flood mapping face cloud interference, free synthetic aperture radar (SAR) the temporal frequency needed capture flooding dynamics. This study developed new modelling crop damage, loss, due flash using time-series multi-sensor images. Crop from was validated extensive participatory data. were assessed during Nigeria's 2020 2022 floods. Consistency found between farmer-reported losses sensing-based assessments: 91 % farmers reporting total loss had no recovery. Flood maps assessments achieved over 90 accuracy, demonstrating reliability multi-source SAR combined machine learning technique. Severe evident, only 13 16 flooded cropland recovered in 2022, respectively. The integrated approach this eliminates uncertainties other techniques, overcomes limitations, offers scalability national-level implementation, providing critical information post-disaster planning, farmer compensation, sustainable agricultural practices enhance security changing climate.
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 105304 - 105304
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0IEEE Geoscience and Remote Sensing Letters, Год журнала: 2024, Номер 21, С. 1 - 5
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
2