How loud is consumer voice in product deletion decisions? Retail analytic insights DOI
Qingyun Zhu, Yiru Wang, Xun Xu

и другие.

Journal of Retailing and Consumer Services, Год журнала: 2024, Номер 82, С. 104110 - 104110

Опубликована: Окт. 4, 2024

Язык: Английский

Text mining approach to explore determinants of grocery mobile app satisfaction using online customer reviews DOI
Avinash Kumar, Shibashish Chakraborty, Pradip Kumar Bala

и другие.

Journal of Retailing and Consumer Services, Год журнала: 2023, Номер 73, С. 103363 - 103363

Опубликована: Апрель 26, 2023

Язык: Английский

Процитировано

60

Enhancing DDoS Attack Detection and Mitigation in SDN Using an Ensemble Online Machine Learning Model DOI Creative Commons
Abdussalam Ahmed Alashhab, Mohd Soperi Mohd Zahid, Babangida Isyaku

и другие.

IEEE Access, Год журнала: 2024, Номер 12, С. 51630 - 51649

Опубликована: Янв. 1, 2024

Software Defined Networks (SDN) offer dynamic reconfigurability and scalability, revolutionizing traditional networking. However, countering Distributed Denial of Service (DDoS) attacks remains a formidable challenge for both SDN-based networks. The integration Machine Learning (ML) into SDN holds promise addressing these threats. While recent research demonstrates ML's accuracy in distinguishing legitimate from malicious traffic, it faces difficulties handling emerging, low-rate, zero-day DDoS due to limited feature scope training. ever-evolving landscape, driven by new protocols, necessitates continuous ML model retraining. In response challenges, we propose an ensemble online machine-learning designed enhance detection mitigation. This approach utilizes learning adapt the with expected attack patterns. is trained evaluated using simulation (Mininet Ryu). Its selection capability overcomes conventional limitations, resulting improved across diverse types. Experimental results demonstrate remarkable 99.2% rate, outperforming comparable models on our custom dataset as well various benchmark datasets, including CICDDoS2019, InSDN, slow-read-DDoS. Moreover, proposed undergoes comparison industry-standard commercial solutions. work establishes strong foundation proactive threat identification mitigation environments, reinforcing network security against evolving cyber risks.

Язык: Английский

Процитировано

19

A text mining approach to explore factors influencing consumer intention to use metaverse platform services: Insights from online customer reviews DOI
Vandana Kumari, Pradip Kumar Bala, Shibashish Chakraborty

и другие.

Journal of Retailing and Consumer Services, Год журнала: 2024, Номер 81, С. 103967 - 103967

Опубликована: Июнь 27, 2024

Язык: Английский

Процитировано

18

Hybrid artificial neural network and structural equation modelling techniques: a survey DOI Creative Commons
A. S. Albahri, Alhamzah Alnoor, A. A. Zaidan

и другие.

Complex & Intelligent Systems, Год журнала: 2021, Номер 8(2), С. 1781 - 1801

Опубликована: Авг. 28, 2021

Topical treatments with structural equation modelling (SEM) and an artificial neural network (ANN), including a wide range of concepts, benefits, challenges anxieties, have emerged in various fields are becoming increasingly important. Although SEM can determine relationships amongst unobserved constructs (i.e. independent, mediator, moderator, control dependent variables), it is insufficient for providing non-compensatory constructs. In contrast previous studies, newly proposed methodology that involves dual-stage analysis ANN was performed to provide linear Consequently, numerous distinct types studies diverse sectors conducted hybrid SEM-ANN analysis. Accordingly, the current work supplements academic literature systematic review includes all major techniques used 11 industries published past 6 years. This study presents state-of-the-art classification taxonomy based on compares effort domains classification. To achieve this objective, we examined Web Science, ScienceDirect, Scopus IEEE Xplore® databases retrieve 239 articles from 2016 2021. The obtained were filtered basis inclusion criteria, 60 selected classified under categories. multi-field uncovered new research possibilities, motivations, challenges, limitations recommendations must be addressed synergistic integration multidisciplinary studies. It contributed two points potential future resulting developed taxonomy. First, importance determinants play, musical art therapy adoption autistic children within healthcare sector most important consideration investigations. context, second use barriers adopting sensing-enhanced satisfy provided by sector. indicates manufacturing technology number investigations, whereas construction small- medium-sized enterprise least. will helpful reference academics practitioners guidance insightful knowledge

Язык: Английский

Процитировано

80

Elevating theoretical insight and predictive accuracy in business research: Combining PLS-SEM and selected machine learning algorithms DOI Creative Commons
Nicole Richter, Ana Alina Tudoran

Journal of Business Research, Год журнала: 2023, Номер 173, С. 114453 - 114453

Опубликована: Дек. 28, 2023

We propose a routine for combining partial least squares-structural equation modeling (PLS-SEM) with selected machine learning (ML) algorithms to exploit the two method's causal-predictive and causal-exploratory capabilities. Triangulating these methods can improve predictive accuracy of research models, enhance understanding relationships, assist in identifying new relationships therewith contribute theorizing. demonstrate advantages challenges triangulating on an illustrative example along four-step-routine: (1) Develop PLS-SEM baseline conceptual model use its standards assess measurement quality generate latent variables scores. (2) Apply specific ML extracted data validate identify (linear) that may go beyond initial hypotheses; similarly, advancements form nonlinearities interaction effects. (3) Evaluate theoretical plausibility alternative models. (4) Integrate models compare using recently proposed prediction-oriented test procedure PLS-SEM.

Язык: Английский

Процитировано

30

Impact of irritation and negative emotions on the performance of voice assistants: Netting dissatisfied customers’ perspectives DOI
Shilpi Jain, Sriparna Basu, Arghya Ray

и другие.

International Journal of Information Management, Год журнала: 2023, Номер 72, С. 102662 - 102662

Опубликована: Май 13, 2023

Язык: Английский

Процитировано

26

Aspect-based sentiment classification of user reviews to understand customer satisfaction of e-commerce platforms DOI Creative Commons
Laleh Davoodi, József Mezei,

Markku Heikkilä

и другие.

Electronic Commerce Research, Год журнала: 2025, Номер unknown

Опубликована: Фев. 12, 2025

Язык: Английский

Процитировано

1

Based on the multi-assessment model: Towards a new context of combining the artificial neural network and structural equation modelling: A review DOI
A. S. Albahri, Alhamzah Alnoor, A. A. Zaidan

и другие.

Chaos Solitons & Fractals, Год журнала: 2021, Номер 153, С. 111445 - 111445

Опубликована: Ноя. 14, 2021

Язык: Английский

Процитировано

56

A Hybrid Method for Big Data Analysis Using Fuzzy Clustering, Feature Selection and Adaptive Neuro-Fuzzy Inferences System Techniques: Case of Mecca and Medina Hotels in Saudi Arabia DOI
Abdullah Alghamdi

Arabian Journal for Science and Engineering, Год журнала: 2022, Номер 48(2), С. 1693 - 1714

Опубликована: Июнь 21, 2022

Язык: Английский

Процитировано

26

Review of artificial neural networks-contribution methods integrated with structural equation modeling and multi-criteria decision analysis for selection customization DOI
A. A. Zaidan, Alhamzah Alnoor,

O. S. Albahri

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 124, С. 106643 - 106643

Опубликована: Июнь 26, 2023

Язык: Английский

Процитировано

14