Journal of Hydrology Regional Studies, Год журнала: 2024, Номер 57, С. 102100 - 102100
Опубликована: Дек. 5, 2024
Язык: Английский
Journal of Hydrology Regional Studies, Год журнала: 2024, Номер 57, С. 102100 - 102100
Опубликована: Дек. 5, 2024
Язык: Английский
Journal of Hydrology, Год журнала: 2024, Номер 634, С. 131117 - 131117
Опубликована: Март 24, 2024
Global climate change has led to an increase in the frequency and scale of extreme weather events worldwide, there is urgent need develop better-performing hydrological models improve accuracy streamflow simulations facilitate water resource planning management. The Soil Water Assessment Tool (SWAT) a notable physical foundation widely used research. However, it uses simplified vegetation growth model, introducing uncertainty into simulation results. This study focused on improving model based remotely sensed phenological leaf area index (LAI) data. Phenological data were define dormancy, LAI replaced corresponding simulated by original model. approach improved describing dynamics. Then, enhanced SWAT was coupled with bidirectional long short-term memory (BiLSTM) validate processes upstream Hei River. During validation, performance simulating (R2 = 0.835, NSE 0.819) better than that 0.821, 0.805). In terms evapotranspiration, demonstrated even greater advantages. verification period, compared those R2 values for daily-scale increased from 0.196 −0.269 0.777 0.732, respectively. monthly-scale 0.782 0.678 0.906 0.851, Simultaneously, levels two coupling approaches prediction compared, i.e., direct BiLSTM (SWAT-BiLSTM) (enhanced SWAT-BiLSTM). results showed SWAT-BiLSTM always performed during entire especially which could more accurately predict peak changes. deep learning accuracy.
Язык: Английский
Процитировано
18Journal of Hydrology, Год журнала: 2023, Номер 629, С. 130558 - 130558
Опубликована: Дек. 7, 2023
Язык: Английский
Процитировано
40CATENA, Год журнала: 2025, Номер 249, С. 108716 - 108716
Опубликована: Янв. 13, 2025
Язык: Английский
Процитировано
1Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(6), С. 9333 - 9346
Опубликована: Янв. 8, 2024
Язык: Английский
Процитировано
6Journal of Hydrology Regional Studies, Год журнала: 2025, Номер 57, С. 102188 - 102188
Опубликована: Янв. 15, 2025
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Фев. 10, 2025
Язык: Английский
Процитировано
0Stochastic Environmental Research and Risk Assessment, Год журнала: 2025, Номер unknown
Опубликована: Фев. 28, 2025
Язык: Английский
Процитировано
0Journal of Hydrology Regional Studies, Год журнала: 2025, Номер 59, С. 102294 - 102294
Опубликована: Апрель 19, 2025
Язык: Английский
Процитировано
0Journal of Hydrology Regional Studies, Год журнала: 2024, Номер 54, С. 101888 - 101888
Опубликована: Июль 19, 2024
Язык: Английский
Процитировано
3Water, Год журнала: 2024, Номер 16(19), С. 2805 - 2805
Опубликована: Окт. 2, 2024
This study introduces a time-lag-informed Random Forest (RF) framework for streamflow time-series prediction across diverse catchments and compares its results against SWAT predictions. We found strong evidence of RF’s better performance by adding historical flows time-lags meteorological values over using only actual values. On daily scale, RF demonstrated robust (Nash–Sutcliffe efficiency [NSE] > 0.5), whereas generally yielded unsatisfactory (NSE < 0.5) tended to overestimate up 27% (PBIAS). However, provided monthly predictions, particularly in with irregular flow patterns. Although both models faced challenges predicting peak snow-influenced catchments, outperformed an arid catchment. also exhibited notable advantage terms computational efficiency. Overall, is good choice predictions limited data, preferable understanding hydrological processes depth.
Язык: Английский
Процитировано
3