Interconnection network analysis through ve-degree-based information functional entropy and complexity DOI
Wenhu Wang, Asfand Fahad,

Mariano Vladimir

и другие.

The European Physical Journal Plus, Год журнала: 2023, Номер 138(12)

Опубликована: Дек. 14, 2023

Язык: Английский

The nexus among artificial intelligence, supply chain and energy sustainability: A time-varying analysis DOI
Yufei Zhong,

Xuesheng Chen,

Zhixian Wang

и другие.

Energy Economics, Год журнала: 2024, Номер 132, С. 107479 - 107479

Опубликована: Март 18, 2024

Язык: Английский

Процитировано

22

Unleashing the power of AI: a systematic review of cutting-edge techniques in AI-enhanced scientometrics, webometrics and bibliometrics DOI
Hamid Reza Saeidnia, Elaheh Hosseini, Shadi Abdoli

и другие.

Library Hi Tech, Год журнала: 2024, Номер unknown

Опубликована: Фев. 9, 2024

Purpose: The study aims to analyze the synergy of Artificial Intelligence (AI), with scientometrics, webometrics, and bibliometrics unlock emphasize potential applications benefits AI algorithms in these fields. Design/methodology/approach: By conducting a systematic literature review, our aim is explore revolutionizing methods used measure scholarly communication, identify emerging research trends, evaluate impact scientific publications. To achieve this, we implemented comprehensive search strategy across reputable databases such as ProQuest, IEEE Explore, EBSCO, Web Science, Scopus. Our encompassed articles published from January 1, 2000, September 2022, resulting thorough review 61 relevant articles. Findings: (i) Regarding application yields various distinct advantages, analyses publications, citations, prediction, collaboration, trend analysis, knowledge mapping, more objective reliable framework. (ii) In terms are able enhance web crawling data collection, link content social media recommender systems. (iii) Moreover, automation analysis disambiguation authors, co-authorship networks, assessment impact, text mining, systems considered integration field bibliometrics. Originality/value: This covers particularly new AI-enhanced highlight significant prospects this through AI.

Язык: Английский

Процитировано

13

A Systematic Literature Review on Sustainability Integration and Marketing Intelligence in the Era of Artificial Intelligence DOI Creative Commons
Md Mehedi Hasan Emon, Tahsina Khan

Review of Business and Economics Studies, Год журнала: 2025, Номер 12(4), С. 6 - 28

Опубликована: Фев. 11, 2025

The purpose of the study is to explore Artificial intelligence (AI) integration into sustainable marketing techniques highlights a transformational potential, combining modern technology with urgent needs sustainability. This article thoroughly examines how AI plays crucial role in improving by enabling more efficient and socially responsible tactics that support sustainability goals. Method: AI-driven insights analytics enhance decision-making processes, improve customer engagement, increase impact campaigns on environmental social outcomes reviewing existing literature practices. conversation delves difficulties moral aspects involved using marketing, such as issues related data privacy, algorithmic bias, importance strategic framework focuses development Results: investigation shows promising yet intricate environment, where seen tool for balancing economic goals need responsibility. research stresses continuous research, multidisciplinary teamwork, policy creation maximize shaping practices intelligence. provides valuable contributions scholarly discussion around artificial intelligence, while also offering practical guidance professionals operating this dynamic commercial sector.

Язык: Английский

Процитировано

2

Supply chain challenges and energy insecurity: The role of AI in facilitating renewable energy transition DOI
Lingxiao Li, Jun Wen,

Yan Jun Li

и другие.

Energy Economics, Год журнала: 2025, Номер unknown, С. 108378 - 108378

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

2

Does geopolitical risk impact sustainable development? A perspective on linkage between geopolitical risk and sustainable development research DOI

Qiang Wang,

Feng Ren,

Rongrong Li

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 451, С. 141980 - 141980

Опубликована: Март 28, 2024

Язык: Английский

Процитировано

9

Insights into the performance of green supply chain in the Chinese semiconductor industry DOI
Fakhar Shahzad, Younes Ben Zaied, Muhammad Asim Shahzad

и другие.

International Journal of Production Economics, Год журнала: 2024, Номер 273, С. 109286 - 109286

Опубликована: Май 29, 2024

Язык: Английский

Процитировано

9

The convergence of IoT and sustainability in global supply chains: Patterns, trends, and future directions DOI
Mohammad Rahimi, Mehrdad Maghsoudi,

Sajjad Shokouhyar

и другие.

Computers & Industrial Engineering, Год журнала: 2024, Номер 197, С. 110631 - 110631

Опубликована: Окт. 9, 2024

Язык: Английский

Процитировано

7

State-of-the-art perspectives on data-driven sustainable supply chain: A bibliometric and network analysis approach DOI
Pramod Sanjay Mahajan, Rohit Agrawal, Rakesh D. Raut

и другие.

Journal of Cleaner Production, Год журнала: 2023, Номер 430, С. 139727 - 139727

Опубликована: Ноя. 16, 2023

Язык: Английский

Процитировано

13

Analyzing supply chain technology trends through network analysis and clustering techniques: a patent-based study DOI

Sajjad Shokouhyar,

Mehrdad Maghsoudi, Shahrzad Khanizadeh

и другие.

Annals of Operations Research, Год журнала: 2024, Номер 341(1), С. 313 - 348

Опубликована: Июнь 26, 2024

Язык: Английский

Процитировано

4

The Power of Patents: Leveraging Text Mining and Social Network Analysis to Forecast Iot Trends DOI
Mehrdad Maghsoudi,

Reza Nourbakhsh,

Mehrdad Ali Kermani

и другие.

Опубликована: Янв. 1, 2025

The rapid growth of the Internet Things (IoT) necessitates accurate forecasting technological trends for organizations to maintain a competitive edge. This study addresses gap in existing literature by combining social network analysis, text mining, and patent data analysis forecast IoT technology trends. Analyzing 143,875 IoT-related patents, we identified six distinct clusters: Smart Devices Efficiency Technologies, Next-generation Communication Networks, Adaptive Transmission Protocols, Connected Device Modules Assemblies, Blockchain Location-Based Narrowband Wireless Systems. Technology life cycle revealed that several clusters have reached saturation, while Protocols emerged as an emerging technology. Social highlighted key groups driving innovation, including China Electric Power Consortium, Indian Academic Researchers, Global Industry Leaders, Collaborative Innovators, Telecom Tech Giants, Intel's Pioneers. Cross-analysis unveiled strategic preferences, with some prioritizing mature technologies others maintaining diversified portfolios. findings contribute deeper understanding landscape, enabling decision-making organizations, researchers, policymakers. By aligning strategies trends, identifying opportunities, making informed investments, stakeholders can drive innovation advantage this rapidly evolving field. study's unique approach offers valuable insights into future direction technologies, providing comprehensive view both advancements collaborative patterns shaping ecosystem.

Язык: Английский

Процитировано

0