Journal of Building Engineering, Год журнала: 2024, Номер unknown, С. 111310 - 111310
Опубликована: Ноя. 1, 2024
Язык: Английский
Journal of Building Engineering, Год журнала: 2024, Номер unknown, С. 111310 - 111310
Опубликована: Ноя. 1, 2024
Язык: Английский
Sustainable Cities and Society, Год журнала: 2024, Номер 106, С. 105350 - 105350
Опубликована: Март 16, 2024
Язык: Английский
Процитировано
20Energies, Год журнала: 2024, Номер 17(5), С. 1124 - 1124
Опубликована: Фев. 27, 2024
The integration of photovoltaic (PV) systems into the global energy landscape has been boosted in recent years, driven by environmental concerns and research renewable sources. accurate prediction temperature solar irradiance is essential for optimizing performance grid PV systems. Machine learning (ML) become an effective tool improving accuracy these predictions. This comprehensive review explores pioneer techniques methodologies employed field ML-based forecasting article presents a comparative study between various algorithms commonly used radiation forecasting. These include regression models such as decision trees, random forest, XGBoost, support vector machines (SVM). beginning this highlights importance weather forecasts operation challenges associated with traditional meteorological models. Next, fundamental concepts machine are explored, highlighting benefits improved estimating power generation integration.
Язык: Английский
Процитировано
18Energies, Год журнала: 2024, Номер 17(16), С. 4145 - 4145
Опубликована: Авг. 20, 2024
The intermittent and stochastic nature of Renewable Energy Sources (RESs) necessitates accurate power production prediction for effective scheduling grid management. This paper presents a comprehensive review conducted with reference to pioneering, comprehensive, data-driven framework proposed solar Photovoltaic (PV) generation prediction. systematic integrating comprises three main phases carried out by seven modules addressing numerous practical difficulties the task: phase I handles aspects related data acquisition (module 1) manipulation 2) in preparation development scheme; II tackles associated model 3) assessment its accuracy 4), including quantification uncertainty 5); III evolves towards enhancing incorporating context change detection 6) incremental learning when new become available 7). adeptly addresses all facets PV prediction, bridging existing gaps offering solution inherent challenges. By seamlessly these elements, our approach stands as robust versatile tool precision real-world applications.
Язык: Английский
Процитировано
17Energy and Buildings, Год журнала: 2024, Номер 319, С. 114561 - 114561
Опубликована: Июль 16, 2024
Язык: Английский
Процитировано
12Journal of Economic Surveys, Год журнала: 2025, Номер unknown
Опубликована: Янв. 21, 2025
ABSTRACT Integrating solar energy into power grids is essential for advancing a low‐carbon economy, but accurate forecasting remains challenging due to output variability. This study comprehensively reviews models, focusing on how Artificial Intelligence (AI) and Machine Learning (ML) enhance forecast accuracy. It examines the current landscape of forecasting, identifies limitations in existing underscores need more adaptable approaches. The primary goals are analyze evolution AI/ML‐based assess their strengths weaknesses, propose structured methodology selecting implementing AI/ML models tailored forecasting. Through comparative analysis, evaluates individual hybrid across different scenarios, identifying under‐explored research areas. findings indicate significant improvements prediction accuracy through advancements, aiding grid management supporting transition. Ensemble methods, deep learning techniques, show great promise enhancing reliability. Combining diverse approaches with advanced techniques results reliable forecasts. suggests that improving model these integrated methods offers substantial opportunities further research, contributing global sustainability efforts, particularly UN SDGs 7 13, promoting economic growth minimal environmental impact.
Язык: Английский
Процитировано
1Energy, Год журнала: 2025, Номер unknown, С. 135286 - 135286
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Energy Reports, Год журнала: 2024, Номер 12, С. 1385 - 1402
Опубликована: Июль 24, 2024
Язык: Английский
Процитировано
7Solar Energy, Год журнала: 2024, Номер 276, С. 112649 - 112649
Опубликована: Июнь 6, 2024
Язык: Английский
Процитировано
6e-Prime - Advances in Electrical Engineering Electronics and Energy, Год журнала: 2024, Номер 9, С. 100674 - 100674
Опубликована: Июль 4, 2024
The increasing demand for sustainable and renewable energy solutions reflects the critical importance of advancing photovoltaic (PV) technology its operational efficiency. In response, this study introduces a novel application k-Nearest Neighbor (k-NN) algorithm to assess reliability applicability solar panel simulation data which aimed classify current states partial shading, open, short circuit conditions, alongside regression-based analysis predicting specific operating parameters. research, published dataset that involved various PV module configurations under different environmental conditions was tested evaluated. k-NN technique applied both status predict performance metrics modules. diagnosis model demonstrated an accuracy 99.2 % F1 score %, indicating high degree in identifying Concurrently, regression exhibited Root Mean Square Error (RMSE) 0.036 R2 value unity showcased effectiveness parameters based on data. concluded results are further enriching simulation-based generation be endorsed implemented before jumping into real experimental applications, addition highlighting potential machine learning cells productivity statistical analysis.
Язык: Английский
Процитировано
6Energy and Buildings, Год журнала: 2024, Номер unknown, С. 114797 - 114797
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
6