An environmental decision support system for manufacturer-retailer within a closed-loop supply chain management using remanufacturing DOI Creative Commons
Subhash Kumar, Ashok Kumar, Rekha Guchhait

и другие.

AIMS environmental science, Год журнала: 2023, Номер 10(5), С. 644 - 676

Опубликована: Янв. 1, 2023

<abstract> <p>Industries face many challenges when emergencies arise. In emergency, there is an increasing demand for self-administered products that are easy to use. The decay rate of these decreases with time. Moreover, the lack disposal used increases waste and carbon emissions. By observing scenario, this study develops a closed-loop supply chain management considers collection remanufacturing products. manufacturing linear ramp-type emissions dependent. model solved by classical optimization calculates optimal total cost. results show retailer can handle shortage situation becomes stable (Case 2) cost production rate. A sensitivity analysis shows changes in respect parameters.</p> </abstract>

Язык: Английский

Machine learning based modeling for predicting the compressive strength of solid waste material-incorporated Magnesium Phosphate Cement DOI
Xiao Luo, Yue Li,

Qiuao Wang

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 442, С. 141172 - 141172

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

13

Life cycle assessment of magnesium phosphate cement production DOI
Xiaoxiao Shen, Xin Wang, Kai Li

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 467, С. 142981 - 142981

Опубликована: Июнь 22, 2024

Язык: Английский

Процитировано

11

Assessing uncertainty in building material emissions using scenario-aware Monte Carlo simulation DOI Creative Commons
Ahmad Bin Thaneya, Aysegul Petek Gursel, Seth Kane

и другие.

Environmental Research Infrastructure and Sustainability, Год журнала: 2024, Номер 4(2), С. 025003 - 025003

Опубликована: Апрель 19, 2024

Abstract Global greenhouse gas emissions from the built environment remain high, driving innovative approaches to develop and adopt building materials that can mitigate some of those emissions. However, life-cycle assessment (LCA) practices still lack standardized quantitative uncertainty frameworks, which are urgently needed robustly assess mitigation efforts. Previous works emphasize importance accounting for three types uncertainties may exist within any assessment: parameter, scenario, model uncertainty. Herein, we a framework distinguishes between different suggest how these could be handled systematically through scenario-aware Monte Carlo simulation (MCS). We demonstrate framework’s decision-informing power case study two multilevel ordinary Portland cement (OPC) manufacturing scenarios. The MCS utilizes first-principles-based OPC inventory, mitigates in other empirical-based models. Remaining by scenario specification or sampling developed probability distribution functions. also method fitting distributions parameter data enumerating implementing based on Kolmogorov–Smirnov test. level detail brought high-resolution breakdown allows developing emission each process manufacturing. This approach highlights specific parameters, along with framing, impact overall Another key takeaway includes relating its contributions total emissions, guide LCA modelers allocating collection refinement efforts processes highest contribution cumulative Ultimately, aim this work is provide robust estimates material readily integrated assessment.

Язык: Английский

Процитировано

4

Synergy between Fenton reagent and solid waste-based solidifying agents during the solidification/stabilization of lead(II) and arsenic(III) contaminated soils DOI
Tao Chen, Bin He,

Dongxin Chu

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 370, С. 122601 - 122601

Опубликована: Сен. 20, 2024

Язык: Английский

Процитировано

3

Research on the influence of ultrafine metakaolin on the properties of magnesium phosphate cement prepared by natural brucite DOI
S. A. T. Long, Yue Li, Nan Wang

и другие.

Construction and Building Materials, Год журнала: 2024, Номер 452, С. 138952 - 138952

Опубликована: Окт. 31, 2024

Язык: Английский

Процитировано

3

Machine learning algorithms for supporting life cycle assessment studies: An analytical review DOI Creative Commons
Bijay Neupane, Farouk Belkadi,

Marco Formentini

и другие.

Sustainable Production and Consumption, Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Toward sustainable magnesium phosphate cement: Deciphering the dissolution and reaction mechanisms of magnesium hydroxide in acid phosphate systems DOI
Yue Li, S. A. T. Long, Nan Wang

и другие.

Composites Part B Engineering, Год журнала: 2025, Номер 302, С. 112542 - 112542

Опубликована: Апрель 23, 2025

Язык: Английский

Процитировано

0

Dissociation and reconstruction of natural brucite in acidic phosphate solutions: A multidimensional analysis from dissolution process to product evolution DOI
S. A. T. Long, Yue Li, Nan Wang

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 484, С. 141862 - 141862

Опубликована: Май 21, 2025

Язык: Английский

Процитировано

0

Utilization of phosphogypsum and phosphate in improving water resistance of magnesium oxychloride cement DOI

Shuqian Zhao,

Zijian Song, Yunsheng Zhang

и другие.

Construction and Building Materials, Год журнала: 2024, Номер 444, С. 137777 - 137777

Опубликована: Авг. 10, 2024

Язык: Английский

Процитировано

2

Optimization of magnesium phosphate cement prepared by natural brucite using ultrafine metakaolin and metakaolin DOI
S. A. T. Long, Yue Li, Nan Wang

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер unknown, С. 111459 - 111459

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

2