Machine Learning Models for Predicting Bioavailability of Traditional and Emerging Aromatic Contaminants in Plant Roots DOI Creative Commons

Siyuan Li,

Yuting Shen, Meng Gao

и другие.

Toxics, Год журнала: 2024, Номер 12(10), С. 737 - 737

Опубликована: Окт. 12, 2024

To predict the behavior of aromatic contaminants (ACs) in complex soil-plant systems, this study developed machine learning (ML) models to estimate root concentration factor (RCF) both traditional (e.g., polycyclic hydrocarbons, polychlorinated biphenyls) and emerging ACs phthalate acid esters, aryl organophosphate esters). Four ML algorithms were employed, trained on a unified RCF dataset comprising 878 data points, covering 6 features cultivation systems 98 molecular descriptors 55 chemicals, including 29 ACs. The gradient-boosted regression tree (GBRT) model demonstrated strong predictive performance, with coefficient determination (R

Язык: Английский

Estimation of N2O and CH4 emissions in field study and DNDC model under optimal nitrogen level in rice-wheat rotation system DOI

Yinzheng Ma,

Yunfa Qiao,

Yujie Tang

и другие.

The Science of The Total Environment, Год журнала: 2025, Номер 974, С. 179168 - 179168

Опубликована: Март 25, 2025

Язык: Английский

Процитировано

0

Appropriately delayed flooding before rice transplanting increases net ecosystem economic benefit in the winter green manure-rice rotation system DOI Creative Commons

Zhengbo Ma,

Rongyan Bu,

Guopeng Zhou

и другие.

Resources Environment and Sustainability, Год журнала: 2024, Номер 18, С. 100173 - 100173

Опубликована: Окт. 10, 2024

Язык: Английский

Процитировано

3

Variation in the Content and Fluorescence Composition of Dissolved Organic Matter in Chinese Different-Term Rice–Crayfish Integrated Systems DOI Open Access
Ru Liu, Xin Huang, Sujuan Chen

и другие.

Sustainability, Год журнала: 2024, Номер 16(12), С. 5139 - 5139

Опубликована: Июнь 17, 2024

This study examines the fluorescence characteristics of dissolved organic matter (DOM) in soils from different periods rice–crayfish integrated systems (RCISs) China. Utilizing three-dimensional excitation–emission matrix (3D-EEM) spectroscopy, investigated hydrophobicity, molecular weight distributions, and properties DOM 2-, 5-, 7-year RCIS operations, with rice monoculture (RM) serving as a control. The findings indicate that initial 2 years an RCIS, factors such straw deposition, root exudates, crayfish excretions increase carbon (DOC) release alter composition, increasing humic acid content soil. As system matures at 5 years, improvements soil structure microbial activity lead to breakdown high-molecular-weight substances rise small-molecular-weight amino acids. By mark, aquatic ecosystem stabilizes, there is humification index DOM. These variations are essential for understanding effects farming on quality sustainability.

Язык: Английский

Процитировано

1

Increased anaerobic conditions promote the denitrifying nitrogen removal potential and limit anammox substrate acquisition within paddy irrigation and drainage units DOI

Feile Du,

Yinghua Yin,

Limei Zhai

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 951, С. 175616 - 175616

Опубликована: Авг. 19, 2024

Язык: Английский

Процитировано

1

Machine Learning Models for Predicting Bioavailability of Traditional and Emerging Aromatic Contaminants in Plant Roots DOI Creative Commons

Siyuan Li,

Yuting Shen, Meng Gao

и другие.

Toxics, Год журнала: 2024, Номер 12(10), С. 737 - 737

Опубликована: Окт. 12, 2024

To predict the behavior of aromatic contaminants (ACs) in complex soil-plant systems, this study developed machine learning (ML) models to estimate root concentration factor (RCF) both traditional (e.g., polycyclic hydrocarbons, polychlorinated biphenyls) and emerging ACs phthalate acid esters, aryl organophosphate esters). Four ML algorithms were employed, trained on a unified RCF dataset comprising 878 data points, covering 6 features cultivation systems 98 molecular descriptors 55 chemicals, including 29 ACs. The gradient-boosted regression tree (GBRT) model demonstrated strong predictive performance, with coefficient determination (R

Язык: Английский

Процитировано

0