Procedia Computer Science, Год журнала: 2024, Номер 246, С. 2244 - 2253
Опубликована: Янв. 1, 2024
Язык: Английский
Procedia Computer Science, Год журнала: 2024, Номер 246, С. 2244 - 2253
Опубликована: Янв. 1, 2024
Язык: Английский
Environmental Monitoring and Assessment, Год журнала: 2025, Номер 197(3)
Опубликована: Фев. 27, 2025
Язык: Английский
Процитировано
0Journal of Cleaner Production, Год журнала: 2025, Номер unknown, С. 145314 - 145314
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Procedia Computer Science, Год журнала: 2025, Номер 258, С. 536 - 551
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Business Strategy and the Environment, Год журнала: 2024, Номер unknown
Опубликована: Сен. 14, 2024
Abstract Despite extensive research on e‐waste management, the integrative responsibilities of multi‐stakeholders and dependency technology remain underexplored. This study aims to develop an multi‐stakeholder responsibility model advance net‐zero goal in management. Following PRISMA protocol, we conducted a systematic review 99 articles. The revealed three themes stakeholder responsibility, four performance measure categories, solutions, roles smart technologies. These insights informed development conceptual enhance environmental e‐waste. proposed emphasises critical attributes relationships, including partnership, shared inclusiveness, transparency; it offers practical guidance for prioritising efficient mature technologies be adopted diffused, enabling effective Our extends theory from organisation‐centric problem‐based perspective, highlighting its implications management suggesting future directions sustainability.
Язык: Английский
Процитировано
3Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 219 - 237
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Earth Science Informatics, Год журнала: 2025, Номер 18(2)
Опубликована: Апрель 17, 2025
Язык: Английский
Процитировано
0Kybernetes, Год журнала: 2024, Номер unknown
Опубликована: Май 29, 2024
Purpose An efficient e-waste management system is developed, aided by deep learning techniques. Here, a smart bin using Internet of things (IoT) sensors generated. The detect the level waste in dustbin. data collected IoT sensor stored blockchain. an adaptive Markov random field (ADMRF) method implemented to determine weight wastes. performance ADMRF boosted optimizing its parameters with help improved corona virus herd immunity optimization algorithm (ICVHIOA). main objective developed ADMRF-based prediction minimize root mean square error (RMSE) and absolute (MAE) rate at time testing. If bins more than 80%, then alert message will be sent collector directly. Optimal route selection carried out ICVHIOA for collection wastes from bin. objectives optimal are reduce distance operational cost environmental impacts. considered recycling. blockchain-based dustbin evaluated comparing it other existing dustbins management. Design/methodology/approach used collect avoid certain diseases caused dumped waste. Disposal recycling necessary decrease pollution manufacture new products Findings RMSE framework was 33.65% better convolutional neural network (CNN), 27.12% increased recurrent (RNN), 22.27% advanced Resnet 9.99% superior long short-term memory (LSTM). Originality/value proposed E-waste has given enhanced also when compared conventional methods.
Язык: Английский
Процитировано
2Journal of Environmental Management, Год журнала: 2024, Номер 373, С. 123658 - 123658
Опубликована: Дек. 9, 2024
Язык: Английский
Процитировано
1Опубликована: Апрель 18, 2024
An inventive program called Jargon Lens was created to meet the various language requirements of international visitors. AI-enhanced image translation technology, jargon lens empowers travelers effortlessly overcome barriers by seamlessly translating text in images their preferred language. The core this project is create a user-friendly mobile application that can recognize and translate within accurately real-time. This will enable users easily understand communicate different languages simply using Smartphone camera, scan or upload real-time, ensuring swift accurate understanding surroundings. Beyond personal advantages, supports constructive encounters promote cultural interchange between visitors local populations. As technological solution, aligns with evolving landscape global tourism, where diversity inclusivity are paramount. technology combine's computer vision such as optical character recognition (OCR). OCR algorithms analyze extract textual content natural processing (NLP) perform translation. In conclusion, emerges transformative tool for tourists, offering sophisticated yet easy-to-use solution navigating barriers. With its focus on real-time multilingual translation, stands key enabler enriched hassle-free travel experiences, bridging communication gaps rapidly tourism ecosystem.
Язык: Английский
Процитировано
0Waste Management, Год журнала: 2024, Номер 190, С. 398 - 408
Опубликована: Окт. 14, 2024
Язык: Английский
Процитировано
0