An optimized LSTM model for clean coal ash content prediction in dense medium separation scenarios on the basis of the dual decomposition method DOI
Yongqi Liu,

Yuping Fan,

Xiaomin Ma

и другие.

International Journal of Coal Preparation and Utilization, Год журнала: 2024, Номер unknown, С. 1 - 26

Опубликована: Дек. 10, 2024

To increase the accuracy of clean coal ash content prediction during dense medium separation process and address time lag issue encountered when measuring content, a model based on WaOA-VMD-SGMD-WaOA-LSTM was proposed. The adopts dual decomposition techniques optimized Variational Mode Decomposition (VMD) Symplectic Geometric (SGMD), which can completely decompose original data, uses Walrus optimization algorithm (WaOA) to optimize hyperparameters Long Short-Term Memory (LSTM) model. In construction, characteristic data ore (𝑍2), raw (𝑍3), heavy mesoporous cyclone pressure (𝑍4), suspension density (𝑍5), magnetic (𝑍6) were combined with decomposed cleaned grouping S-IMF0~S-IMFn, CO-IMF1, CO-IMF2 as input variables construct multiple LSTM models. Finally, value is superimposed realize content. Based industrial preparation plant in Shanxi, China, results show that coefficient determination (R2) 0.9974. After adding secondary technology, average absolute error reduced by 60.99% compared single strategy.

Язык: Английский

A multi-factor combined traffic flow prediction model with secondary decomposition and improved entropy weight method DOI
Guohui Li, Haonan Deng, Hong Yang

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124424 - 124424

Опубликована: Июнь 18, 2024

Язык: Английский

Процитировано

19

Research on feature extraction method for underwater acoustic signal using secondary decomposition DOI
Guohui Li, Bo Liu, Hong Yang

и другие.

Ocean Engineering, Год журнала: 2024, Номер 306, С. 117974 - 117974

Опубликована: Май 8, 2024

Язык: Английский

Процитировано

15

Adaptive denoising model for ship-radiated noise based on dynamic weighted filtering DOI
Guohui Li, Liwen Zhang, Hong Yang

и другие.

Measurement, Год журнала: 2024, Номер 236, С. 115042 - 115042

Опубликована: Июнь 2, 2024

Язык: Английский

Процитировано

8

Energy fluctuation pattern recognition coupled with decomposition-integration: A novel ocean tidal energy forecasting system DOI
Qingsong Wu, Hong Yang, Guohui Li

и другие.

Measurement, Год журнала: 2024, Номер 238, С. 115374 - 115374

Опубликована: Июль 23, 2024

Язык: Английский

Процитировано

5

A method for accurate prediction of photovoltaic power based on multi-objective optimization and data integration strategy DOI
Guohui Li, Xuan Wei, Hong Yang

и другие.

Applied Mathematical Modelling, Год журнала: 2024, Номер 136, С. 115643 - 115643

Опубликована: Авг. 17, 2024

Язык: Английский

Процитировано

5

A generalized fault diagnosis framework for rotating machinery based on phase entropy DOI
Zhenya Wang, Meng Zhang, Hui Chen

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер unknown, С. 110745 - 110745

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

5

Short-term offshore wind speed forecasting approach based on multi-stage decomposition and deep residual network with self-attention DOI
Hakan Açıkgöz, Deniz Korkmaz

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 146, С. 110313 - 110313

Опубликована: Фев. 19, 2025

Язык: Английский

Процитировано

0

Predicting water demand for spraying operations in dry bulk ports: A hybrid approach based on data decomposition and deep learning DOI
Jiaqi Guo, Wenyuan Wang, Philip Kwong

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103313 - 103313

Опубликована: Апрель 2, 2025

Язык: Английский

Процитировано

0

RegStack machine learning model for accurate prediction of tidal stream turbine performance and biofouling DOI Creative Commons
Haroon Rashid,

Mohd Hanzla,

Tarek Berghout

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127766 - 127766

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

A new denoising method of ship-radiated noise: Improved variational mode decomposition coupled with fractional order entropy double threshold criterion DOI
Guohui Li, Liwen Zhang, Hong Yang

и другие.

Measurement Science and Technology, Год журнала: 2024, Номер 35(12), С. 126112 - 126112

Опубликована: Авг. 2, 2024

Abstract Ship-radiated noise (SRN) contains abundant ship characteristic information. The detection and analysis of SRN is very important for target recognition, positioning tracking. However, complex ocean easily interferes with the propagation in water. To achieve a preferable denoising effect, new method proposed. First, decomposed by an improved variational mode decomposition (DVMD) dung beetle optimizer, complexity each intrinsic function after measured fractional order refined composite multiscale fluctuation dispersion entropy (FRCMFDE). Second, distribution characteristics are analyzed, different adaptive division methods used to determine modes, i.e. it divides all modes into clean mildly noisy moderately highly modes. Then, locally weighted scatterplot smoothing dual-tree wavelet transform (IDTCWT) denoise respectively. Finally, denoised obtained reconstructing two groups proposed Rossler, Chen Lorenz signals, signal-to-noise ratio (SNR) 13.0785, 11.9390 12.3775 dB, Compared DVMD-FRCMFDE, DVMD-FRCMFDE-wavelet soft threshold ( WSTD) DVMD-FRCMFDE-IDTCWT, SNR increased 48%, 45.93% 38.76%, respectively, root mean square error 46.55%, 42.76% 30.04%, applied four types SRN. Based on these findings, enhances clarity smoothness phase space attractor, effectively suppresses marine environmental SRN, which provides solid groundwork subsequent processing

Язык: Английский

Процитировано

3