Characterizing the Chemistry of One-Part Green Geopolymer Foams: The Role of Silica Fume and Fiber Hybridization DOI Creative Commons
Adem Ahıskalı, Barış Bayrak, Kenan Toklu

и другие.

ACS Omega, Год журнала: 2025, Номер unknown

Опубликована: Май 14, 2025

Язык: Английский

An explainable machine learning approach to predict the compressive strength of graphene oxide-based concrete DOI Creative Commons
D.P.P. Meddage, Isuri Fonseka, Damith Mohotti

и другие.

Construction and Building Materials, Год журнала: 2024, Номер 449, С. 138346 - 138346

Опубликована: Сен. 17, 2024

Язык: Английский

Процитировано

21

New Opportunity: Materials Genome Strategy for Engineered Cementitious Composites (ECC) Design DOI
Wenguang Chen, Long Liang, Fangming Jiang

и другие.

Cement and Concrete Composites, Год журнала: 2025, Номер 159, С. 106009 - 106009

Опубликована: Фев. 27, 2025

Язык: Английский

Процитировано

2

Optimizing the utilization of Metakaolin in pre-cured geopolymer concrete using ensemble and symbolic regressions DOI Creative Commons
Kennedy C. Onyelowe, Viroon Kamchoom‬, Ahmed M. Ebid

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Фев. 26, 2025

The optimization of metakaolin (MK) in pre-cured geopolymer concrete involves developing predictive models to capture the interplay various influencing factors and guide mix design for improved compressive strength sustainability. Ensemble methods symbolic regression are promising approaches this task due their complementary strengths solving challenges associated with repeated experiments laboratory. Choosing machine learning predictions over repeated, expensive, time-consuming research projects, such as optimizing utilization concrete, presents a paradigm shift how data-driven insights can revolutionize material development. integration ensemble enables researchers derive valuable optimize critical performance parameters efficiently. In work, 235 records were collected from extensive literature search different mixing ratios metakaolin-based at ages. Each record contains MK: content (kg/m3), SHS: Sodium hydroxide solution SHSM: molarity (Mole), SSS: silicate W: Extra water (not including alkaline solutions) W/S: Water Solid ratio (Total / part activator solutions + MK), Na2O/Al2O3: oxide aluminium ratio, SiO2/Al2O3: Silicon H2O/Na2O: CA/FA: Coarse Fine aggregate CAg: coarse aggregates SP: super-plasticizer PCC: 0 no pre-curing, 1 pre-curing 60 °C, 2 80 CT: Curing temperature (°C), Age: age testing (days) CS: Compressive (MPa). portioned into training set (180 records≈75%) validation (55 records≈ 25%) modeled methods. At end model metrics used evaluate models' ability Hoffman Gardener's sensitivity analysis was impact variables on mixed metakaolin. GB KNN became decisive excellent which outclassed others indicated that SHSM, SSS, W/S, Na2O/Al2O3 most influential predicted strength.

Язык: Английский

Процитировано

2

AI-driven design for the compressive strength of ultra-high performance geopolymer concrete (UHPGC): From explainable ensemble models to the graphical user interface DOI
Metin Katlav, Faruk Ergen, İzzeddin Dönmez

и другие.

Materials Today Communications, Год журнала: 2024, Номер 40, С. 109915 - 109915

Опубликована: Июль 22, 2024

Язык: Английский

Процитировано

14

Adaptive drive-based integration technique for predicting rheological and mechanical properties of fresh gangue backfill slurry DOI Creative Commons
Chaowei Dong, Jianfei Xu, Nan Zhou

и другие.

Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04346 - e04346

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Explainable ensemble algorithms with grey wolf optimization for estimation of the tensile performance of polyethylene fiber-reinforced engineered cementitious composite DOI
Mehmet Emin TABAR, Metin Katlav, Kâzım Türk

и другие.

Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112028 - 112028

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

AI-based constitutive model simulator for predicting the axial load-deflection behavior of recycled concrete powder and steel fiber reinforced concrete column DOI
Aneel Manan, Pu Zhang, Weiyi Chen

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 470, С. 140628 - 140628

Опубликована: Март 3, 2025

Язык: Английский

Процитировано

1

Sustainable Catalysts: Advances in Geopolymer-Catalyzed Reactions and Their Applications DOI
Fernando Gomes de Souza, Shekhar Bhansali, Viviane Silva Valladão

и другие.

Journal of Molecular Structure, Год журнала: 2025, Номер unknown, С. 142017 - 142017

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Geopolymer bricks: The next generation of construction materials for sustainable environment DOI
Dipankar Das,

Anna Gołąbiewska,

Prasanta Kumar Rout

и другие.

Construction and Building Materials, Год журнала: 2024, Номер 445, С. 137876 - 137876

Опубликована: Авг. 17, 2024

Язык: Английский

Процитировано

7

Parametric Analysis and Prediction of Geopolymerization Process DOI
Suraj Kumar Parhi, Sanjaya Kumar Patro

Materials Today Communications, Год журнала: 2024, Номер unknown, С. 111047 - 111047

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

6