Maximization of Hydrogen Production via Methane Steam Reforming in a Wavy Microreactor by Optimization of Catalyst Coating: A Combined Computational and Data Analytics Approach DOI
Mohsen Esfandiary, Nader Karimi,

Seyfolah Saedodin

и другие.

Industrial & Engineering Chemistry Research, Год журнала: 2024, Номер 63(43), С. 18599 - 18614

Опубликована: Окт. 21, 2024

This study introduces an advanced methodology for optimizing catalytic coatings on microreactor walls used in the steam reforming of methane. By integrating computational fluid dynamics, data analytics, and multiobjective optimization, this approach significantly intensifies process, reduces catalyst usage, improves economic environmental aspects hydrogen production. The challenge identifying ideal is addressed by employing surrogate functions created extensive sets from dynamics machine learning. These are rigorously validated, achieving 99.9% accuracy both total H2 production rate per coated surface area. optimal coating demonstrates a 65.8% increase area, yet 9% entropy generation compared to fully channel. findings underscore significant opportunities enhance cost-effectiveness sustainability future microreactors through optimization discrete coatings.

Язык: Английский

Computer-aided many-objective optimization framework via deep learning surrogate models: Promoting carbon reduction in refining processes from a life cycle perspective DOI
Xin Zhou, Zhibo Zhang,

Huibing Shi

и другие.

Chemical Engineering Science, Год журнала: 2025, Номер unknown, С. 121350 - 121350

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Comparative Study of Hydrogen Storage and Metal Hydride Systems: Future Energy Storage Solutions DOI Open Access
Nesrin İlgin Beyazıt

Processes, Год журнала: 2025, Номер 13(5), С. 1506 - 1506

Опубликована: Май 14, 2025

Hydrogen is a key energy carrier, playing vital role in sustainable systems. This review provides comparative analysis of physical, chemical, and innovative hydrogen storage methods from technical, environmental, economic perspectives. It has been identified that compressed liquefied are predominantly utilized transportation applications, while chemical transport mainly supported by liquid organic carriers (LOHC) ammonia-based Although metal hydrides nanomaterials offer high capacities, they face limitations related to cost thermal management. Furthermore, artificial intelligence (AI)- machine learning (ML)-based optimization techniques highlighted for their potential enhance efficiency improve system performance. In conclusion, systems achieve broader applicability, it recommended integrated approaches be adopted—focusing on material development, feasibility, environmental sustainability.

Язык: Английский

Процитировано

1

The multi-objective data-driven approach: A route to drive performance optimization in the food industry DOI
Manon Perrignon, Thomas Croguennec, Romain Jeantet

и другие.

Trends in Food Science & Technology, Год журнала: 2024, Номер 152, С. 104697 - 104697

Опубликована: Авг. 31, 2024

Язык: Английский

Процитировано

4

Foundation Models for the Process Industry: Challenges and Opportunities DOI Creative Commons
Lei Ren, Haiteng Wang, Yuqing Wang

и другие.

Engineering, Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Time series prediction of anaerobic digestion yield and carbon emissions from food waste based on iTransformer model DOI
Yongming Han,

Cai Zeng,

Q.X. Ni

и другие.

Chemical Engineering Journal, Год журнала: 2025, Номер 513, С. 163064 - 163064

Опубликована: Апрель 26, 2025

Язык: Английский

Процитировано

0

Multi-scale revolution of artificial intelligence in chemical industry DOI
Ying Li,

Quanhu Sun,

Zutao Zhu

и другие.

Frontiers of Chemical Science and Engineering, Год журнала: 2025, Номер 19(7)

Опубликована: Май 23, 2025

Процитировано

0

Maximization of Hydrogen Production via Methane Steam Reforming in a Wavy Microreactor by Optimization of Catalyst Coating: A Combined Computational and Data Analytics Approach DOI
Mohsen Esfandiary, Nader Karimi,

Seyfolah Saedodin

и другие.

Industrial & Engineering Chemistry Research, Год журнала: 2024, Номер 63(43), С. 18599 - 18614

Опубликована: Окт. 21, 2024

This study introduces an advanced methodology for optimizing catalytic coatings on microreactor walls used in the steam reforming of methane. By integrating computational fluid dynamics, data analytics, and multiobjective optimization, this approach significantly intensifies process, reduces catalyst usage, improves economic environmental aspects hydrogen production. The challenge identifying ideal is addressed by employing surrogate functions created extensive sets from dynamics machine learning. These are rigorously validated, achieving 99.9% accuracy both total H2 production rate per coated surface area. optimal coating demonstrates a 65.8% increase area, yet 9% entropy generation compared to fully channel. findings underscore significant opportunities enhance cost-effectiveness sustainability future microreactors through optimization discrete coatings.

Язык: Английский

Процитировано

1