The Science of The Total Environment, Год журнала: 2024, Номер 942, С. 173697 - 173697
Опубликована: Июнь 6, 2024
Язык: Английский
The Science of The Total Environment, Год журнала: 2024, Номер 942, С. 173697 - 173697
Опубликована: Июнь 6, 2024
Язык: Английский
Energy & Fuels, Год журнала: 2024, Номер 38(13), С. 11541 - 11561
Опубликована: Июнь 20, 2024
Chemical looping is a revolutionary energy conversion method aimed at the low-carbon transformation of fossil fuels. The development this technology primarily involves screening oxygen carriers, design reactors, and optimization process flows, typically requiring extensive experimental trials time consumption. Machine learning, with its high-precision predictive capabilities, can optimize chemical technology. This review comprehensively summarizes methods recent advances in application machine learning outlined typical involving database construction, model analysis, interpretable algorithms. Then, carrier screening, reactor design, flow through are explored. To address challenges found these research developments, potential solutions future perspectives proposed. We hope that offer inspiration for researchers field promote advancement
Язык: Английский
Процитировано
7Emergent Materials, Год журнала: 2024, Номер unknown
Опубликована: Авг. 16, 2024
Язык: Английский
Процитировано
3Process Safety and Environmental Protection, Год журнала: 2025, Номер unknown, С. 106854 - 106854
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Sustainable Energy & Fuels, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
A new method based on machine learning and DFT calculations for screening oxygen carriers during chemical looping argon purification is proposed in this study.
Язык: Английский
Процитировано
0Energy & Fuels, Год журнала: 2025, Номер unknown
Опубликована: Фев. 19, 2025
Язык: Английский
Процитировано
0Metals, Год журнала: 2025, Номер 15(5), С. 480 - 480
Опубликована: Апрель 24, 2025
The enthalpy of mixing, a critical thermodynamic property in the liquid phase reflecting element interaction strength and pivotal for studying equilibria, can now be predicted efficiently using machine learning. This study proposes model combining learning with Calculation Phase Diagram (CALPHAD) to predict mixing. We obtained data 583 binary alloy systems from SGTE database, ensuring experimental constraints accuracy. Using pure properties Miedema’s parameters as descriptors, we trained evaluated four algorithms, finding LightGBM perform best (R2 = 92.2%, MAE 3.5 kJ/mol). performance was further optimized through Recursive Feature Elimination (REF) Maximal Information Coefficient (MIC) feature selection methods. Shapley Additive Explanations reveals that primary factors affecting mixing enthalpy, such atomic radius electronegativity, align key Miedema model, thereby confirming physical interpretability our data-driven approach. work offers an accelerated method predicting complex multi-component system thermodynamics. Future research will focus on collecting more high-quality enhance accuracy generalization.
Язык: Английский
Процитировано
0Renewable and Sustainable Energy Reviews, Год журнала: 2025, Номер 219, С. 115847 - 115847
Опубликована: Май 17, 2025
Язык: Английский
Процитировано
0The Science of The Total Environment, Год журнала: 2024, Номер 942, С. 173697 - 173697
Опубликована: Июнь 6, 2024
Язык: Английский
Процитировано
2