Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Energy, Год журнала: 2025, Номер unknown, С. 134782 - 134782
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Systems, Год журнала: 2025, Номер 13(3), С. 165 - 165
Опубликована: Фев. 27, 2025
With the rapid development of China’s economy, issue environmental pollution during urbanization has become increasingly prominent, posing a significant threat to residents’ health and quality life. While existing studies have explored economic impacts smart city initiatives their effects on carbon emissions, relationship between policies urban emissions remains underexplored. This study fills this gap by examining impact pilot pollutant using panel data from 280 Chinese cities (2007–2021) multi-period DID model. The findings demonstrate that construction effectively reduces level in cities, with effect persisting even after conducting various robustness tests. Furthermore, our mechanism analysis reveals upgrading industrial structure, enhancing green innovation capabilities, improving energy efficiency are crucial means which mitigates emissions. Additionally, we identify enhancement digital infrastructure reinforcement regulations can enhance mitigation efficacy development. suppressive is more pronounced non-resource-based cities.
Язык: Английский
Процитировано
0Energy Strategy Reviews, Год журнала: 2025, Номер 58, С. 101690 - 101690
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 135555 - 135555
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Frontiers in Environmental Science, Год журнала: 2025, Номер 13
Опубликована: Апрель 8, 2025
The role of digital economy (DE) in improving urban ecological development (UED) has attracted scholarly attention. Additionally, traditional causal inference models encounter several challenges, such as model misspecification and the “curse dimensionality.” In response to these problems, double machine learning method is applied assess effect DE on UED. Leveraging data from 282 Chinese cities 2006–2021, valuable conclusions emerge. First, improves UED positively contributes resilience recovery. Second, promoting green innovation, enhancing environmental efficiency, optimizing industrial structures are pathways through which Third, influence displays heterogeneity. Based results, this work proposes relevant recommendations grounded empirical research.
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 136443 - 136443
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Humanities and Social Sciences Communications, Год журнала: 2025, Номер 12(1)
Опубликована: Июнь 4, 2025
Язык: Английский
Процитировано
0IOP Conference Series Earth and Environmental Science, Год журнала: 2025, Номер 1499(1), С. 012082 - 012082
Опубликована: Май 1, 2025
Abstract The study is devoted to the issues of energy efficiency in implementation smart city strategies. As an integral part sustainable urban development, measures increase all spheres life a solve set problematic aimed at achieving main goal improving quality cities. object research processes development subject applied aspects programmes. methods were provisions concept which involves ensuring balance, environmental friendliness and inclusiveness systemic approach, interdisciplinary approach based on interconnection mutual influence components system author considers world experience implementing programmes cities, including initiatives related creation atlases digital interactive reference systems, modernization improve buildings through self-sufficient district heating introduction lighting systems for outdoor electric vehicles active re Taken together, strategies helps reduce costs, household payments, develop green technologies, promote decarbonisation development.
Язык: Английский
Процитировано
0Sustainability, Год журнала: 2024, Номер 16(11), С. 4414 - 4414
Опубликована: Май 23, 2024
The exploration of regional variations in coal flow efficiency (CFE) China and the collaborative strategies for emission reduction are vital accelerating progress ecological civilization within industry achieving an optimal allocation resources. To unveil evolutionary traits actual CFE its decomposition, this study employs a current technology based on combined super-efficient measure (SBM), global SBM, stochastic frontier approach (SFA), Malmquist–Luenberger index (GML) model panel data from 2010 to 2021 across 30 provinces China. research conclusions as follows. First, significant gaps observed among provinces, showcasing superior performance north east regions. Moreover, impact environmental factors random disruptions individual slack variables varies, resulting decrease 0.18 0.43 source-area sink-area when these not taken into account. Thirdly, clear distinction emerges between technical change (EC) best-practice gap (BPC). Lastly, displays disparities marked by upward trajectory fluctuating patterns resembling “W” shape.
Язык: Английский
Процитировано
1