Chemometrics and Intelligent Laboratory Systems, Год журнала: 2024, Номер unknown, С. 105309 - 105309
Опубликована: Дек. 1, 2024
Язык: Английский
Chemometrics and Intelligent Laboratory Systems, Год журнала: 2024, Номер unknown, С. 105309 - 105309
Опубликована: Дек. 1, 2024
Язык: Английский
Critical Reviews in Oncology/Hematology, Год журнала: 2025, Номер unknown, С. 104653 - 104653
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
3Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Янв. 6, 2025
This study focuses on the use of machine learning (ML) models to predict biodistribution nanoparticles in various organs, using a dataset derived from research nanoparticle behavior for cancer treatment. The includes both categorical and numerical variables related properties, with focus their distribution across organs such as tumor, heart, liver, spleen, lung, kidney tissues. In order address complex non-linear nature data, three were utilized: Bayesian Ridge Regression (BRR), Kernel (KRR), K-Nearest Neighbors (KNN). selection these was based wide range capabilities dealing relationships data complexity. To further model performance strength, also applied cutting-edge methods including Firefly Algorithm hyperparameter tuning Recursive Feature Elimination (RFE) feature selection. Based higher R² lower RMSE values most output parameters, concluded that (KRR) did better compared other predicting outcomes. revealed models, particularly KRR, exhibit high level efficiency accurately representing characteristics biodistribution. results obtained provide valuable insights into optimization predictive nanoparticles. These can be enhanced by advanced techniques.
Язык: Английский
Процитировано
1Critical Reviews in Oncology/Hematology, Год журнала: 2025, Номер unknown, С. 104701 - 104701
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Biomolecules, Год журнала: 2025, Номер 15(3), С. 444 - 444
Опубликована: Март 20, 2025
Nanomaterials represent an innovation in cancer imaging by offering enhanced contrast, improved targeting capabilities, and multifunctional modalities. Recent advancements material engineering have enabled the development of nanoparticles tailored for various techniques, including magnetic resonance (MRI), computed tomography (CT), positron emission (PET), ultrasound (US). These nanoscale agents improve sensitivity specificity, enabling early detection precise tumor characterization. Monte Carlo (MC) simulations play a pivotal role optimizing nanomaterial-based modeling their interactions with biological tissues, predicting contrast enhancement, refining dosimetry radiation-based techniques. computational methods provide valuable insights into nanoparticle behavior, aiding design more effective agents. Moreover, artificial intelligence (AI) machine learning (ML) approaches are transforming enhancing image reconstruction, automating segmentation, improving diagnostic accuracy. AI-driven models can also optimize MC-based accelerating data analysis through predictive modeling. This review explores latest imaging, highlighting synergy between nanotechnology, MC simulations, innovations. By integrating these interdisciplinary approaches, future technologies achieve unprecedented precision, paving way diagnostics personalized treatment strategies.
Язык: Английский
Процитировано
1Journal of Controlled Release, Год журнала: 2024, Номер 376, С. 1251 - 1270
Опубликована: Ноя. 12, 2024
Язык: Английский
Процитировано
4Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0International Journal of Biological Macromolecules, Год журнала: 2025, Номер unknown, С. 142486 - 142486
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0ACS Nano, Год журнала: 2025, Номер unknown
Опубликована: Апрель 7, 2025
Nanoparticles (NPs) have been extensively researched for targeted diagnostic imaging and drug delivery, yet their clinical translation remains limited, with only a few achieving Food Drug Administration approval. This limited success is primarily due to challenges in precise organ- or tissue-specific targeting, which arise from off-target tissue accumulation suboptimal clearance profiles. Herein we examine the critical role of physicochemical properties, including size, surface charge, shape, elasticity, hardness, density, governing biodistribution, targetability, NPs. We highlight recent advancements engineering NPs showcasing both significant progress remaining field nanomedicine. Additionally, discuss emerging tools technologies that are being developed address these challenges. Based on insights materials science, biomedical engineering, computational biology, research, propose key design considerations next-generation nanomedicines enhanced organ selectivity.
Язык: Английский
Процитировано
0Materials Today Bio, Год журнала: 2024, Номер 30, С. 101386 - 101386
Опубликована: Дек. 9, 2024
Язык: Английский
Процитировано
2Chemometrics and Intelligent Laboratory Systems, Год журнала: 2024, Номер unknown, С. 105309 - 105309
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1