Geostatistical and multivariate analysis of phosphate evolution and its relationship with heavy metals in shallow groundwater in a Semi-Arid Basin
Earth Science Informatics,
Год журнала:
2025,
Номер
18(3)
Опубликована: Фев. 18, 2025
Язык: Английский
Flood Susceptibility Assessment in Urban Areas via Deep Neural Network Approach
Sustainability,
Год журнала:
2024,
Номер
16(17), С. 7489 - 7489
Опубликована: Авг. 29, 2024
Floods,
caused
by
intense
rainfall
or
typhoons,
overwhelming
urban
drainage
systems,
pose
significant
threats
to
areas,
leading
substantial
economic
losses
and
endangering
human
lives.
This
study
proposes
a
methodology
for
flood
assessment
in
areas
using
multiclass
classification
approach
with
Deep
Neural
Network
(DNN)
optimized
through
hyperparameter
tuning
genetic
algorithms
(GAs)
leveraging
remote
sensing
data
of
dataset
the
Ibadan
metropolis,
Nigeria
Metro
Manila,
Philippines.
The
results
show
that
DNN
model
significantly
improves
risk
accuracy
(Ibadan-0.98)
compared
datasets
containing
only
location
precipitation
(Manila-0.38).
By
incorporating
soil
into
model,
as
well
reducing
number
classes,
it
is
able
predict
risks
more
accurately,
providing
insights
proactive
mitigation
strategies
planning.
Язык: Английский
Assessing the impact of rainfall, topography, and human disturbances on nutrient levels using integrated machine learning and GAMs models in the Choctawhatchee River Watershed
Journal of Environmental Management,
Год журнала:
2025,
Номер
375, С. 124361 - 124361
Опубликована: Янв. 31, 2025
Язык: Английский
Digital technologies for water use and management in agriculture: Recent applications and future outlook
Agricultural Water Management,
Год журнала:
2025,
Номер
309, С. 109347 - 109347
Опубликована: Фев. 2, 2025
Язык: Английский
Decoding drinking water flavor: A pioneering and interpretable machine learning approach
Journal of Water Process Engineering,
Год журнала:
2025,
Номер
72, С. 107577 - 107577
Опубликована: Март 30, 2025
Язык: Английский
Water quality evaluation in Liaoning Province large reservoirs: a new method integrating random forest-TOPSIS and Monte Carlo simulation
Applied Water Science,
Год журнала:
2025,
Номер
15(5)
Опубликована: Апрель 7, 2025
Язык: Английский
Predicting groundwater phosphate levels in coastal multi-aquifers: A geostatistical and data-driven approach
The Science of The Total Environment,
Год журнала:
2024,
Номер
953, С. 176024 - 176024
Опубликована: Сен. 4, 2024
Язык: Английский
Predicting Total Alkalinity in Saline Water Using Machine Learning: A Case Study with RapidMiner
Deleted Journal,
Год журнала:
2024,
Номер
4, С. 100032 - 100032
Опубликована: Ноя. 10, 2024
Язык: Английский
Water Quality in the Ma’an Archipelago Marine Special Protected Area: Remote Sensing Inversion Based on Machine Learning
Journal of Marine Science and Engineering,
Год журнала:
2024,
Номер
12(10), С. 1742 - 1742
Опубликована: Окт. 3, 2024
Due
to
the
increasing
impact
of
climate
change
and
human
activities
on
marine
ecosystems,
there
is
an
urgent
need
study
water
quality.
The
use
remote
sensing
for
quality
inversion
offers
a
precise,
timely,
comprehensive
way
evaluate
present
state
future
trajectories
In
this
paper,
model
utilizing
machine
learning
was
developed
variations
in
Ma’an
Archipelago
Marine
Special
Protected
Area
(MMSPA)
over
long-time
series
Landsat
images.
concentrations
chlorophyll-a
(Chl-a),
phosphate,
dissolved
inorganic
nitrogen
(DIN)
sea
area
from
2002
2022
were
inverted
analyzed.
spatial
temporal
characteristics
these
investigated.
results
indicated
that
random
forest
could
reliably
predict
Chl-a,
DIN
MMSPA.
Specifically,
Chl-a
showed
coefficient
determination
(R2)
0.741,
root
mean
square
error
(RMSE)
3.376
μg/L,
absolute
percentage
(MAPE)
16.219%.
Regarding
distribution,
parameters
notably
elevated
nearshore
zones,
especially
northwest,
contrasted
with
lower
offshore
southeast
areas.
Predominantly,
regions
higher
proximity
aquaculture
zones.
Additionally,
nutrients
originating
land
sources,
transported
via
rivers
such
as
Yangtze
River,
well
influenced
by
activities,
have
shaped
nutrient
distribution.
Over
long
term,
MMSPA
has
shown
considerable
interannual
fluctuations
during
past
two
decades.
As
sanctuary,
preserving
superior
healthy
ecosystem
very
important.
Efforts
protection,
restoration,
management
will
demand
labor.
Remote
demonstrated
its
worth
proficient
technology
real-time
monitoring,
capable
supporting
sustainable
exploitation
resources
safeguarding
ecological
environment.
Язык: Английский