International Journal of Production Research, Год журнала: 2025, Номер unknown, С. 1 - 20
Опубликована: Фев. 26, 2025
Язык: Английский
International Journal of Production Research, Год журнала: 2025, Номер unknown, С. 1 - 20
Опубликована: Фев. 26, 2025
Язык: Английский
Journal of Energy Chemistry, Год журнала: 2024, Номер 97, С. 630 - 649
Опубликована: Июнь 19, 2024
Язык: Английский
Процитировано
34Journal of Energy Chemistry, Год журнала: 2024, Номер 95, С. 464 - 483
Опубликована: Апрель 12, 2024
Lithium-ion batteries have extensive usage in various energy storage needs, owing to their notable benefits of high density and long lifespan. The monitoring battery states failure identification are indispensable for guaranteeing the secure optimal functionality batteries. impedance spectrum has garnered growing interest due its ability provide a valuable understanding material characteristics electrochemical processes. To inspire further progress investigation application spectrum, this paper provides comprehensive review determination utilization spectrum. sources inaccuracies systematically analyzed terms frequency response characteristics. applicability utilizing diverse features diagnosis prognosis is elaborated. Finally, challenges prospects future research discussed.
Язык: Английский
Процитировано
25Energy, Год журнала: 2025, Номер unknown, С. 134668 - 134668
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
3Journal of Energy Chemistry, Год журнала: 2024, Номер 92, С. 591 - 604
Опубликована: Янв. 29, 2024
State of health (SOH) estimation e-mobilities operated in real and dynamic conditions is essential challenging. Most existing estimations are based on a fixed constant current charging discharging aging profiles, which overlooked the fact that profiles random not complete application. This paper investigates influence feature engineering accuracy different machine learning (ML)-based SOH acting recharging sub-profiles where realistic battery mission profile considered. Fifteen features were extracted from partial considering factors such as starting voltage values, charge amount, sliding windows. Then, selected selection pipeline consisting filtering supervised ML-based subset selection. Multiple linear regression (MLR), Gaussian process (GPR), support vector (SVR) applied to estimate SOH, root mean square error (RMSE) was used evaluate compare performance. The results showed can improve by 55.05%, 2.57%, 2.82% for MLR, GPR SVR respectively. It demonstrated with lower voltage, large charge, window size more likely achieve higher accuracy. work hopes give some insights into recharges performance tries fill gap effective between theoretical study
Язык: Английский
Процитировано
15Reliability Engineering & System Safety, Год журнала: 2024, Номер 252, С. 110450 - 110450
Опубликована: Авг. 22, 2024
Язык: Английский
Процитировано
12Applied Energy, Год журнала: 2024, Номер 375, С. 124077 - 124077
Опубликована: Авг. 6, 2024
Язык: Английский
Процитировано
9IEEE Access, Год журнала: 2024, Номер 12, С. 14659 - 14670
Опубликована: Янв. 1, 2024
In the world of modern energy, Lithium-Ion batteries reign supreme, offering rechargeability, sustainability, and long-term energy storage. However, their lifespan is not infinite, calling for accurate prediction remaining life under various conditions. Deep learning shines in this domain, with Transformer architecture blossoming as a powerful tool time series forecasting. This research dives into data collection, processing, model design, training, evaluation, making key methodological contributions to battery prediction. Notably, SGEformer model, enhanced growth seasonal embedding, emerges groundbreaking innovation. Comparing ETSformer, Informer, Reformer, Transformer, LSTM reveals its unique strengths. With an impressive MSE score 0.000117, establishes itself highly effective prediction, highlighting value embedding boosting accuracy. propels state-of-the-art state-of-health robust foundation precise reliable forecasts.
Язык: Английский
Процитировано
8Energy, Год журнала: 2025, Номер unknown, С. 134411 - 134411
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Quality and Reliability Engineering International, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
ABSTRACT The accurate estimation of battery state health (SOH) is crucial for monitoring status and alerting users to replace the degraded batteries. Energy, as a comprehensive feature integrating current voltage, can effectively reflect amount stored energy, graphical energy features contain more information. In this study, hybrid ResNet‐SVR model based on proposed estimate battery's SOH. sequential are first constructed during constant charging process. Then they transformed into two‐dimensional structure through sliding window inputs, which shows significant differences between cycles. uses ResNet extract relevant information from data SVR regression prediction. It combines advantages convolutional neural network extraction prediction achieve better results. method validated two datasets achieves satisfactory results in estimation, with an average mean absolute error 0.0072 percentage 0.83%. Overall, our findings highlight potential SOH significantly enhances performance management system various applications.
Язык: Английский
Процитировано
1eTransportation, Год журнала: 2025, Номер unknown, С. 100420 - 100420
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
1