Air pollution, weather factors, and realized volatility forecasts of agricultural commodity futures DOI
Jiawen Luo, Qun Zhang

Journal of Futures Markets, Год журнала: 2023, Номер 44(2), С. 151 - 217

Опубликована: Окт. 17, 2023

Abstract This study investigates the potential effects of environmental factors on fluctuations in agricultural commodity futures markets, by constructing a new category daily exogenous predictors related to air pollution, weather, climate change, and investor attention. The empirical results from out‐of‐sample analyses suggest that heterogeneous autoregressive (HAR) model incorporating all these is more likely outperform other HAR‐type models. Additionally, economic evaluations demonstrate superior performance models investors' attention change or extreme weather as predictors. While not are equally important for volatility forecasts, adopting appropriate variable selection methods handle different sets can lead better than HAR benchmark. With inclusion pollution model, portfolio with an annualized average excess return 16.2068% Sharpe ratio 10.0431 be achieved wheat futures, respectively.

Язык: Английский

Climate change, cropland adjustments, and food security: Evidence from China DOI
Xiaomeng Cui, Zhong Zheng

Journal of Development Economics, Год журнала: 2023, Номер 167, С. 103245 - 103245

Опубликована: Дек. 20, 2023

Язык: Английский

Процитировано

49

The impact of climate change on corporate ESG performance: The role of resource misallocation in enterprises DOI
Chengming Li, Tang Wei, Feiyan Liang

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 445, С. 141263 - 141263

Опубликована: Фев. 14, 2024

Язык: Английский

Процитировано

46

Extreme heat and rural household adaptation: Evidence from Northeast China DOI
Xiaomeng Cui, Qu Tang

Journal of Development Economics, Год журнала: 2023, Номер 167, С. 103243 - 103243

Опубликована: Дек. 13, 2023

Язык: Английский

Процитировано

32

IoT smart farming adoption intention under climate change: The gain and loss perspective DOI

Assanee Piancharoenwong,

Yuosre F. Badir

Technological Forecasting and Social Change, Год журнала: 2024, Номер 200, С. 123192 - 123192

Опубликована: Янв. 12, 2024

Язык: Английский

Процитировано

11

Assessment of extreme temperature to fiscal pressure in China DOI
Zhongfei Chen, Xin Zhang, Fanglin Chen

и другие.

Global Environmental Change, Год журнала: 2024, Номер 84, С. 102797 - 102797

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

9

The impact of intra-annual temperature fluctuations on agricultural temperature extreme events and attribution analysis in mainland China DOI
Jiahao Han, Shibo Fang, Xinyu Wang

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 949, С. 174904 - 174904

Опубликована: Июль 25, 2024

Язык: Английский

Процитировано

7

Fertilizer response to climate change: Evidence from corn production in China DOI
Quan Quan, Fujin Yi, Huilin Liu

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 928, С. 172226 - 172226

Опубликована: Апрель 7, 2024

Язык: Английский

Процитировано

6

Structural identification of weather impacts on crop yields: Disentangling agronomic from adaptation effects DOI
François Bareille, Raja Chakir

American Journal of Agricultural Economics, Год журнала: 2023, Номер 106(3), С. 989 - 1019

Опубликована: Июль 10, 2023

Abstract A large literature has assessed the impacts of climate change on agricultural production by estimating reduced‐form models crop yields conditionally weather and individual fixed effects. The estimates obtained are usually interpreted as once farmers have adapted . Yet, few attempts documented that do adapt to weather, none verified these adjustments actually impact yields. Our objective here is unpack how affects developing a structural model explicitly accounts for both plants' biophysical farmers' behavioral responses weather. Considering adaptation during growing season through fertilizer pesticide applications, our approach allows us distinguish “direct” effects (i.e., agronomic changes plant growth per se) from “indirect” via input choices impacts). We estimate underlying using farm‐level data Meuse French department, which provides details uses crop. show indicate similar yields, range sensitivity analyses. sizable reduce projected damage change. In illustrative case, offsets between one‐quarter two‐thirds negative future warming analyses exhibit commonly used inherently capture within‐season

Язык: Английский

Процитировано

13

Half-day (daytime and nighttime) precipitation extremes in China: Changes and attribution from 1981 to 2022 DOI
Jiahao Han,

Shibo Fang,

Xiaomao Lin

и другие.

Global and Planetary Change, Год журнала: 2025, Номер 245, С. 104696 - 104696

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

0

Bayesian neural network modelling for estimating ecological footprints and blue economy sustainability across G20 nations DOI Creative Commons
Muhammad Hanif Akhtar, Jian Xu, Umair Kashif

и другие.

Humanities and Social Sciences Communications, Год журнала: 2025, Номер 12(1)

Опубликована: Янв. 25, 2025

Язык: Английский

Процитировано

0