Environmental Monitoring and Assessment, Год журнала: 2021, Номер 193(4)
Опубликована: Март 25, 2021
Язык: Английский
Environmental Monitoring and Assessment, Год журнала: 2021, Номер 193(4)
Опубликована: Март 25, 2021
Язык: Английский
Marine Pollution Bulletin, Год журнала: 2012, Номер 64(11), С. 2409 - 2420
Опубликована: Авг. 25, 2012
Язык: Английский
Процитировано
362Environmental Science and Pollution Research, Год журнала: 2022, Номер 29(32), С. 48491 - 48508
Опубликована: Фев. 22, 2022
Язык: Английский
Процитировано
87Ecological Indicators, Год журнала: 2012, Номер 18, С. 501 - 511
Опубликована: Янв. 30, 2012
Язык: Английский
Процитировано
194Water Resources Management, Год журнала: 2018, Номер 32(7), С. 2227 - 2245
Опубликована: Фев. 8, 2018
Язык: Английский
Процитировано
124Artificial Intelligence Review, Год журнала: 2021, Номер 54(6), С. 4619 - 4651
Опубликована: Апрель 24, 2021
Язык: Английский
Процитировано
88Environmental Science and Pollution Research, Год журнала: 2023, Номер 31(41), С. 54204 - 54233
Опубликована: Фев. 1, 2023
Язык: Английский
Процитировано
29Journal of Environmental Management, Год журнала: 2024, Номер 352, С. 120091 - 120091
Опубликована: Янв. 15, 2024
Water is a vital resource supporting broad spectrum of ecosystems and human activities. The quality river water has declined in recent years due to the discharge hazardous materials toxins. Deep learning machine have gained significant attention for analysing time-series data. However, these methods often suffer from high complexity forecasting errors, primarily non-linear datasets hyperparameter settings. To address challenges, we developed an innovative HDTO-DeepAR approach predicting indicators. This proposed compared with standalone algorithms, including DeepAR, BiLSTM, GRU XGBoost, using performance metrics such as MAE, MSE, MAPE, NSE. NSE hybrid ranges between 0.8 0.96. Given value's proximity 1, model appears be efficient. PICP values (ranging 95% 98%) indicate that highly reliable Experimental results reveal close resemblance model's predictions actual values, providing valuable insights future trends. comparative study shows suggested surpasses all existing, well-known models.
Язык: Английский
Процитировано
11Environmental Earth Sciences, Год журнала: 2014, Номер 73(12), С. 8217 - 8236
Опубликована: Дек. 26, 2014
Язык: Английский
Процитировано
74SpringerPlus, Год журнала: 2016, Номер 5(1)
Опубликована: Ноя. 22, 2016
Underground water is an important natural resource serving as a reliable source of drinking for many people worldwide, especially in developing countries. quality needs to be given primary research and control attention due possible contamination. This study was therefore designed determine the physico-chemical bacteriological borehole Upper West Northern regions Ghana.The conducted seven districts Ghana (including six region one region). The bacterial load samples determined using standard microbiological methods. Physico-chemical properties including pH, total alkalinity, temperature, turbidity, true colour, dissolved solids (TDS), electrical conductivity, hardness, calcium magnesium iron, ion, chloride fluoride aluminium arsenic, ammonium ions, nitrate nitrite concentrations were determined. values obtained compared with World Health Organization (WHO) standards water.The recorded alkalinity temperature ranges 6.14-7.50, 48-240 mg/l 28.8-32.8 °C, respectively. Furthermore, mean calcium, magnesium, chloride, fluoride, aluminium, ammonium, 0.06, 22.11, 29.84, 13.97, 0.00, 0.01, 2.09 0.26 mg/l, Turbidity, TDS conductivity ranged from 0.13 105 NTU, 5 130 HU, 80.1 524 131 873 µS/cm, In addition, hardness value found 178.07 whereas respectively 55.28 122.79 mg/l. Only 14% tested positive faecal coliforms.The revealed that only few parameters above tolerable limits recommended by WHO. calls regular monitoring purification boreholes ensure good quality.
Язык: Английский
Процитировано
65Water Air & Soil Pollution, Год журнала: 2017, Номер 228(10)
Опубликована: Сен. 20, 2017
Язык: Английский
Процитировано
48