Evaluation of Ecological Environment Quality Using an Improved Remote Sensing Ecological Index Model DOI Creative Commons
Yanan Liu,

Wanlin Xiang,

Pingbo Hu

и другие.

Remote Sensing, Год журнала: 2024, Номер 16(18), С. 3485 - 3485

Опубликована: Сен. 20, 2024

The Remote Sensing Ecological Index (RSEI) model is widely used for large-scale, rapid Environment Quality (EEQ) assessment. However, both the RSEI and its improved models have limitations in explaining EEQ with only two-dimensional (2D) factors, resulting inaccurate evaluation results. Incorporating more comprehensive, three-dimensional (3D) ecological information poses challenges maintaining stability large-scale monitoring, using traditional weighting methods like Principal Component Analysis (PCA). This study introduces an Improved (IRSEI) that integrates 2D (normalized difference vegetation factor, normalized built-up soil heat wetness, factor air quality) 3D (comprehensive factor) factors enhanced monitoring. employs a combined subjective–objective approach, utilizing principal components hierarchical analysis under minimum entropy theory. A comparative of IRSEI Miyun, representative area, reveals strong correlation consistent monitoring trends. By incorporating quality provides accurate detailed assessment, better aligning ground truth observations from Google Earth satellite imagery.

Язык: Английский

Spatiotemporal Detection of Ecological Environment Quality Changes in the Lijiang River Basin Using a New Dual Model DOI Open Access
Ning Li, Haoyu Wang, Wen He

и другие.

Sustainability, Год журнала: 2025, Номер 17(2), С. 414 - 414

Опубликована: Янв. 8, 2025

Detecting spatiotemporal changes in ecological environment quality (EEQ) is of great importance for maintaining regional security and supporting sustainable economic social development. However, research on EEQ detection from a remote sensing perspective insufficient, especially at the basin scale. Based two indices, namely, Ecological Index (EI) Remote Sensing (RSEI), we established dual model, combining comprehensive index (RSECI) its differential change to study evolutionary characteristics Lijiang River Basin (LRB) 2000 2020. The RSECI combines following five indicators: greenness, wetness, heat, dryness, aerosol optical depth. results this show that area good excellent LRB decreased 3676.22 km2 2083.89 2020, while poor fair increased 80.81 1375.91 From curve difference first rose, fell, then rose again. wetness greenness indicators had positive effects promoting EEQ, depth, dryness restraining effects. stepwise regression analysis showed that, among selected indicators, were key factors improving during period. approach model proposed can be used quantitatively evaluate facilitate spatial temporal dynamic EEQ.

Язык: Английский

Процитировано

0

Construction of ecological security patterns in typical arid regions based on the synergy of efficient ecological water utilization and environmental quality enhancement DOI Creative Commons

Xiaolin Qin,

Hongbo Ling,

Qianjuan Shan

и другие.

CATENA, Год журнала: 2025, Номер 249, С. 108713 - 108713

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

0

Quantifying spatio-temporal changes in the ecological environment quality and their implications for surface mass movement after a high-magnitude earthquake DOI Creative Commons
Ming Chen, Chuan Tang,

Huixia Yang

и другие.

Global Ecology and Conservation, Год журнала: 2025, Номер unknown, С. e03454 - e03454

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Spatiotemporal Dynamics and Driving Mechanism of Ecological Environment Quality in Piedmont-Oasis-Desert Ecotone Based on Long-term Harmonized Remote Sensing Ecological Index- Take Korla - Tiemenguan Oasis in Xinjiang as an Example DOI Creative Commons

Junling He,

Xifeng Ju, Chuqiao Han

и другие.

Environmental and Sustainability Indicators, Год журнала: 2025, Номер unknown, С. 100611 - 100611

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Spatiotemporal evaluation of environmental quality of Karawang regency based on remote sensing ecological index DOI Open Access

Satrya Dirgantara,

Hamim Zaky Hadibasyir, Umar El Izzudin Kiat

и другие.

IOP Conference Series Earth and Environmental Science, Год журнала: 2025, Номер 1438(1), С. 012024 - 012024

Опубликована: Янв. 1, 2025

Abstract As urban areas expand, the growth of human activities increasingly degrades ecological environment, causing a significant decline in vegetation, soil erosion, loss biodiversity, temperature elevation, and other adverse effects. If left unchecked, these effects can have severe consequences for living organisms inhabiting those areas. Evaluating correlation between development environment has become an urgent matter requiring attention from all countries, particularly establishing effective systematic environmental quality measures. Remote Sensing Ecological Index (RSEI) is one remote sensing method designed to analyze using four parameters: wetness, greenness, dryness, temperature. The aim this research spatiotemporally assess RSEI parameters Karawang Regency. Principal Component Analysis (PCA) results range 70% 80%. findings indicate that high temperature, open built-up land are negative driving factors. year 2021 had largest extent poor classification class, reaching 917.11 Km 2 , while 2019 smallest only 21.31 .

Язык: Английский

Процитировано

0

Monitoring and Evaluation of Ecological Environment Quality in the Tianshan Mountains of China Using Remote Sensing from 2001 to 2020 DOI Open Access
Yuting Liu, Zhifang Chai, Qifei Zhang

и другие.

Sustainability, Год журнала: 2025, Номер 17(4), С. 1673 - 1673

Опубликована: Фев. 17, 2025

High-altitude mountainous regions are highly vulnerable to climate and environmental shifts, with the current global change exerting a profound influence on ecological landscape of Tianshan Mountains in China. This study assesses security quality China from 2001 2020 by employing various remote sensing techniques such as Remote Sensing Ecological Index (RSEI) for evaluation, Normalized Difference Vegetation (NDVI) fractional vegetation cover (FVC) analysis, CASA model estimating primary productivity (NPP), carbon source/sink calculating net ecosystem (NEP) vegetation. The research also delves into evolutionary trends impact mechanisms environment using land use meteorological data. findings reveal that RSEI’s principal component (PC1) exhibits significant explanatory power, showing notable increase 5.90% 2020. Despite relatively stable changes RSEI over past two decades covering 61.37% area, there is prevalent anti-persistence pattern at 72.39%. Notably, NDVI, FVC, NPP display upward characteristics. While most areas continue emit carbon, marked NEP, signifying an enhanced absorption capacity. partial correlation coefficients between temperature, well precipitation, demonstrate statistically relationships (p < 0.05), encompassing 6.36% 1.55% respectively. Temperature displays predominantly negative 98.71% significantly correlated zones, while precipitation positive correlation. An in-depth analysis how affects provides crucial insights strategic interventions enhance regional protection promote sustainability.

Язык: Английский

Процитировано

0

Spatiotemporal Evolution and Influencing Mechanism of Urbanization and Ecological Environmental Quality between 2000–2020 in Henan Province, China DOI
Xinyu Dong, Kaijian Xu, Wei Li

и другие.

Remote Sensing Applications Society and Environment, Год журнала: 2025, Номер unknown, С. 101492 - 101492

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Dynamic Monitoring and Evaluation of Ecological Environment Quality in Urumqi Metropolitan Based on Google Earth Engine DOI
Shaojie Bai,

Abudukeyimu Abulizi,

Junxia Wang

и другие.

Springer proceedings in physics, Год журнала: 2025, Номер unknown, С. 57 - 76

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Urban Environmental Degradation in Bangladesh: Insights from a Weighted Entropy Ecological Index DOI
Jayanta Biswas

Next research., Год журнала: 2025, Номер unknown, С. 100386 - 100386

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

MFE-ResNet: A new extraction framework for land cover characterization in mining areas DOI
Chen Wang, Tao Chen, Antonio Plaza

и другие.

Future Generation Computer Systems, Год журнала: 2023, Номер 145, С. 550 - 562

Опубликована: Апрель 4, 2023

Язык: Английский

Процитировано

9