
Critical Reviews in Environmental Science and Technology, Год журнала: 2024, Номер unknown, С. 1 - 24
Опубликована: Ноя. 24, 2024
Язык: Английский
Critical Reviews in Environmental Science and Technology, Год журнала: 2024, Номер unknown, С. 1 - 24
Опубликована: Ноя. 24, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2024, Номер 261, С. 125499 - 125499
Опубликована: Окт. 15, 2024
Язык: Английский
Процитировано
6Computers and Electronics in Agriculture, Год журнала: 2024, Номер 219, С. 108793 - 108793
Опубликована: Март 6, 2024
Язык: Английский
Процитировано
3Water, Год журнала: 2024, Номер 16(6), С. 831 - 831
Опубликована: Март 13, 2024
Predicting short-term urban water demand is essential for resource management and directly impacts planning supply–demand balance. As numerous factors impact the prediction of present complex nonlinear dynamic characteristics, current methods mainly focus on time dimension characteristics variables, while ignoring potential influence spatial temporal variables. This leads to low accuracy. To address this problem, a model which integrates both proposed in paper. Firstly, anomaly detection correction are conducted using Prophet model. Secondly, maximum information coefficient (MIC) used construct an adjacency matrix among combined with graph convolutional neural network (GCN) extract multi-head attention mechanism applied enhance key features related use data, reducing unnecessary factors. Finally, made through three-layer long memory (LSTM) network. Compared existing models, hybrid study reduces average absolute percentage error by 1.868–2.718%, showing better accuracy effectiveness. can assist cities rationally allocating resources lay foundation future research.
Язык: Английский
Процитировано
3Water, Год журнала: 2024, Номер 16(24), С. 3616 - 3616
Опубликована: Дек. 15, 2024
Surface waterbodies are heavily exposed to pollutants caused by natural disasters and human activities. Empowering sensor technologies in water quality monitoring, sufficient measurements have become available develop machine learning (ML) models. Numerous ML models quickly been adopted predict indicators various surface waterbodies. This paper reviews 78 recent articles from 2022 October 2024, categorizing utilizing into three groups: Point-to-Point (P2P), which estimates the current target value based on other at same time point; Sequence-to-Point (S2P), utilizes previous series data one point ahead; Sequence-to-Sequence (S2S), uses forecast sequential values future. The used each group classified compared according indicators, availability, model performance. Widely strategies for improving performance, including feature engineering, hyperparameter tuning, transfer learning, recognized described enhance effectiveness. interpretability limitations of applications discussed. review provides a perspective emerging
Язык: Английский
Процитировано
3Groundwater for Sustainable Development, Год журнала: 2025, Номер unknown, С. 101405 - 101405
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132769 - 132769
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Environmental Modelling & Software, Год журнала: 2025, Номер 188, С. 106412 - 106412
Опубликована: Март 5, 2025
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103234 - 103234
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Processes, Год журнала: 2025, Номер 13(6), С. 1726 - 1726
Опубликована: Май 31, 2025
Lake monitoring is essential for sustaining aquatic ecosystems, and accurate estimation/prediction of water quality parameters crucial to this effort. Despite its importance, the performance predictive models built on varying temporal resolutions remains underexplored systematically. This study used daily 4 h high resolution (HTR) datasets assess multiple machine learning models—namely, Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM) networks—under consistent data scales. The results indicate that dissolved oxygen (DO) exhibits pronounced sensitivity resolution, while total nitrogen (TN), phosphorus (TP), ammonia (NH3-N) show distinct, parameter-specific response patterns align with characteristics their underlying biogeochemical processes. research helps deepen understanding how influences model in prediction, offering valuable insights selecting optimal modeling techniques enhance lake protection strategies.
Язык: Английский
Процитировано
0