Decision Support Framework for Water Quality Management in Reservoirs Integrating Artificial Intelligence and Statistical Approaches DOI Open Access
Syeda Zehan Farzana, Dev Raj Paudyal,

Sreeni Chadalavada

и другие.

Water, Год журнала: 2024, Номер 16(20), С. 2944 - 2944

Опубликована: Окт. 16, 2024

Planning, managing and optimising surface water quality is a complex multifaceted process, influenced by the effects of both climate uncertainties anthropogenic activities. Developing an innovative robust decision support framework (DSF) essential for effective efficient management, so it can provide information on assist policy makers resource managers to identify potential causes deterioration. This crucial implementing actions such as infrastructure development, legislative compliance environmental initiatives. Recent advancements in computational domains have created opportunities employing artificial intelligence (AI), advanced statistics mathematical methods use improved management. study proposed comprehensive conceptual DSF minimise adverse extreme weather events change quality. The utilises machine learning (ML), deep (DL), geographical system (GIS) statistical techniques foundation this outcomes from our three studies, where we examined application ML DL models predicting index (WQI) reservoirs, utilising find seasonal trend rainfall quality, exploring connection between streamflow, GIS show spatial temporal variability hydrological parameters WQI. Three potable supply reservoirs Toowoomba region Australia were taken area practical implementation DSF. serve mechanism distinct characteristics understand correlations rainfall, streamflow will enable enhance their making processes selecting management priorities safeguard face future variability, including prolonged droughts flooding.

Язык: Английский

Output characteristics and driving factors of non-point source nitrogen (N) and phosphorus (P) in the Three Gorges reservoir area (TGRA) based on migration process: 1995–2020 DOI

Shaojun Tan,

Deti Xie, Jiupai Ni

и другие.

The Science of The Total Environment, Год журнала: 2023, Номер 875, С. 162543 - 162543

Опубликована: Март 5, 2023

Язык: Английский

Процитировано

23

Assessment of urbanization impacts on vegetation cover in major cities of Pakistan: evidence from remotely sensed data DOI
Zeeshan Zafar

GeoJournal, Год журнала: 2024, Номер 89(4)

Опубликована: Авг. 2, 2024

Язык: Английский

Процитировано

15

Robust clustering-based hybrid technique enabling reliable reservoir water quality prediction with uncertainty quantification and spatial analysis DOI
Mahmood Fooladi, Mohammad Reza Nikoo, Rasoul Mirghafari

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 362, С. 121259 - 121259

Опубликована: Июнь 1, 2024

Язык: Английский

Процитировано

11

Spatiotemporal comprehensive evaluation of water quality based on enhanced variable fuzzy set theory: A case study of a landfill in karst area DOI

Yu Yang,

Bo Li, Chaoyi Li

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 450, С. 141882 - 141882

Опубликована: Март 29, 2024

Язык: Английский

Процитировано

10

Water quality within the greater Suva urban marine environment through spatial analysis of nutrients and water properties DOI Creative Commons
Jasha Dehm, Romain Le Gendre, Monal M. Lal

и другие.

Marine Pollution Bulletin, Год журнала: 2025, Номер 213, С. 117601 - 117601

Опубликована: Янв. 31, 2025

Coastal ecosystems in Pacific Island Countries and Territories are vital to local livelihoods, yet increasingly face pressures from urbanization. In Fiji, the Greater Suva Urban Area, where one-third of nation's population live, exemplifies these challenges. This study examines spatial temporal water quality variations coastal zone, focusing on physicochemical, nutrients, clarity parameters. Using a Seabird Scientific SBE19 CTD Thermo Orion™ AQUAfast™ colorimeter, coupled with hierarchical clustering principal component analysis, six clusters were identified, influenced by oceanic processes, river inputs, anthropogenic activities. Key findings highlight nutrient enrichment near urban centers particularly at Kinoya Sewage Treatment Plant outfall, ammonia exceeded 17.8 mg/L, significant variation observed nitrate (up 0.24 ± 0.06 mg/L) nitrite concentrations mouths. Seasonal runoff contributed elevated turbidity 3.5 NTU) total suspended solids 14.7 levels during wet months. Salinity, temperature exhibited strong seasonal variability, reflecting land-ocean interactions restricted exchange. These emphasize need for targeted action mitigate pollution, runoff, wastewater impacts. provides cost-effective monitoring framework management, offering insights sustainable resource management Fiji other regions amidst urbanization climate change.

Язык: Английский

Процитировано

1

An integrated framework consisting of spatiotemporal evolution and driving force analyses for early warning management of water quality DOI

Jianying Cai,

Xuan Wang, Yanpeng Cai

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 462, С. 142628 - 142628

Опубликована: Май 19, 2024

Язык: Английский

Процитировано

7

Evaluation of surface water quality in Brahmani River Basin, Odisha (India), for drinking purposes using GIS-based WQIs, multivariate statistical techniques and semi-variogram models DOI
Abhijeet Das

Innovative Infrastructure Solutions, Год журнала: 2024, Номер 9(12)

Опубликована: Ноя. 23, 2024

Язык: Английский

Процитировано

7

Water quality variation and driving factors quantitatively evaluation of urban lakes during quick socioeconomic development DOI

Xiaoyu Wang,

Yinqun Yang,

Jing Wan

и другие.

Journal of Environmental Management, Год журнала: 2023, Номер 344, С. 118615 - 118615

Опубликована: Июль 14, 2023

Язык: Английский

Процитировано

16

Carbon reduction behavior of waste power battery recycling enterprises considering learning effects DOI

Jianling Jiao,

Yuqin Chen, Jingjing Li

и другие.

Journal of Environmental Management, Год журнала: 2023, Номер 341, С. 118084 - 118084

Опубликована: Май 3, 2023

Язык: Английский

Процитировано

13

Assessing and predicting water quality index with key water parameters by machine learning models in coastal cities, China DOI Creative Commons

Jing Xu,

Yuming Mo,

Senlin Zhu

и другие.

Heliyon, Год журнала: 2024, Номер 10(13), С. e33695 - e33695

Опубликована: Июнь 28, 2024

The water quality index (WQI) is a widely used tool for comprehensive assessment of river environments. However, its calculation involves numerous parameters, making sample collection and laboratory analysis time-consuming costly. This study aimed to identify key parameters the most reliable prediction models that could provide maximum accuracy using minimal indicators. Water from 2020 2023 were collected including nine biophysical chemical indicators in seventeen rivers Yancheng Nantong, two coastal cities Jiangsu Province, China, adjacent Yellow Sea. Linear regression seven machine learning (Artificial Neural Network (ANN), Self-Organizing Maps (SOM), K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF), Extreme Gradient Boosting (XGB) Stochastic (SGB)) developed predict WQI different groups input variables based on correlation analysis. results indicated improved 2022 but deteriorated 2023, with inland stations exhibiting better conditions than ones, particularly terms turbidity nutrients. environment was comparatively Nantong Yancheng, mean values approximately 55.3–72.0 56.4–67.3, respectively. classifications "Good" "Medium" accounted 80 % records, no instances "Excellent" 2 classified as "Bad". performance all models, except SOM, addition variables, achieving R2 higher 0.99 such SVM, RF, XGB, SGB. RF XGB total phosphorus (TP), ammonia nitrogen (AN), dissolved oxygen (DO) (R2 = 0.98 0.91 training testing phase) predicting values, TP AN (accuracy 85 %) grades. "Low" grades highest at 90 %, followed by level 70 %. model contribute efficient evaluation identifying facilitating effective management basins.

Язык: Английский

Процитировано

5