Optimal waste load allocation in river systems based on a new multi-objective cuckoo optimization algorithm DOI
Shekoofeh Haghdoost, Mohammad Hossein Niksokhan, Mohammad Zamani

и другие.

Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(60), С. 126116 - 126131

Опубликована: Ноя. 27, 2023

Язык: Английский

Hybrid WT–CNN–GRU-based model for the estimation of reservoir water quality variables considering spatio-temporal features DOI
Mohammad Zamani, Mohammad Reza Nikoo, Ghazi Al-Rawas

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 358, С. 120756 - 120756

Опубликована: Апрель 9, 2024

Язык: Английский

Процитировано

27

Machine learning approaches for estimating interfacial tension between oil/gas and oil/water systems: a performance analysis DOI Creative Commons

Fatemeh Yousefmarzi,

Ali Haratian,

Javad Mahdavi Kalatehno

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Янв. 9, 2024

Abstract Interfacial tension (IFT) is a key physical property that affects various processes in the oil and gas industry, such as enhanced recovery, multiphase flow, emulsion stability. Accurate prediction of IFT essential for optimizing these increasing their efficiency. This article compares performance six machine learning models, namely Support Vector Regression (SVR), Random Forests (RF), Decision Tree (DT), Gradient Boosting (GB), Catboosting (CB), XGBoosting (XGB), predicting between oil/gas oil/water systems. The models are trained tested on dataset contains input parameters influence IFT, gas-oil ratio, formation volume factor, density, etc. results show SVR Catboost achieve highest accuracy prediction, with an R-squared value 0.99, while outperforms Oil/Water 0.99. study demonstrates potential reliable resilient tool industry. findings this can help improve understanding optimization forecasting facilitate development more efficient reservoir management strategies.

Язык: Английский

Процитировано

24

Machine learning for predicting concrete carbonation depth: A comparative analysis and a novel feature selection DOI
Mehrdad Ehsani,

Mobin Ostovari,

Shoaib Mansouri

и другие.

Construction and Building Materials, Год журнала: 2024, Номер 417, С. 135331 - 135331

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

22

Simulating daily PM2.5 concentrations using wavelet analysis and artificial neural network with remote sensing and surface observation data DOI
Qingchun Guo,

Zhenfang He,

Zhaosheng Wang

и другие.

Chemosphere, Год журнала: 2023, Номер 340, С. 139886 - 139886

Опубликована: Авг. 21, 2023

Язык: Английский

Процитировано

44

A multi-model data fusion methodology for reservoir water quality based on machine learning algorithms and bayesian maximum entropy DOI
Mohammad Zamani, Mohammad Reza Nikoo,

Fereshteh Niknazar

и другие.

Journal of Cleaner Production, Год журнала: 2023, Номер 416, С. 137885 - 137885

Опубликована: Июнь 28, 2023

Язык: Английский

Процитировано

43

An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy DOI
Dongmei Xu, Zong Li, Wenchuan Wang

и другие.

Journal of Hydrology, Год журнала: 2023, Номер 629, С. 130558 - 130558

Опубликована: Дек. 7, 2023

Язык: Английский

Процитировано

43

A coupled model to improve river water quality prediction towards addressing non-stationarity and data limitation DOI
Shengyue Chen, Jinliang Huang, Peng Wang

и другие.

Water Research, Год журнала: 2023, Номер 248, С. 120895 - 120895

Опубликована: Ноя. 20, 2023

Язык: Английский

Процитировано

30

Impact on nonlinear runoff of LID facilities and parameter response in the TVGM model DOI
Pengjun Li,

Luwen Zhuang,

Kairong Lin

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132780 - 132780

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Developing sustainable strategies by LID optimization in response to annual climate change impacts DOI
Mohammad Zamani,

Khashayar Saniei,

Banafsheh Nematollahi

и другие.

Journal of Cleaner Production, Год журнала: 2023, Номер 416, С. 137931 - 137931

Опубликована: Июнь 28, 2023

Язык: Английский

Процитировано

23

Forecasting water quality variable using deep learning and weighted averaging ensemble models DOI
Mohammad Zamani, Mohammad Reza Nikoo, Sina Jahanshahi

и другие.

Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(59), С. 124316 - 124340

Опубликована: Ноя. 24, 2023

Язык: Английский

Процитировано

23