Spatial network structure and influencing factors of carbon emission intensity in Guangdong-Hong Kong-Macao greater bay area DOI Creative Commons
Heng Wei,

Chaohui Zheng

Frontiers in Environmental Science, Год журнала: 2024, Номер 12

Опубликована: Апрель 16, 2024

Introduction: In response to China’s ambitious dual-carbon goals, this study investigates the spatial correlation and influencing factors of carbon emission intensity within Guangdong-Hong Kong-Macao Great Bay Area (GBA), a region pivotal for nation’s energy conservation reduction efforts. Through comprehensive analysis encompassing period from 2000 2020, research aims delineate dynamics emissions identify actionable insights regional low-carbon development. Methods: Utilizing an integrated methodology comprising autocorrelation analysis, Social Network Analysis (SNA), Quadratic Assignment Procedure (QAP), analyzes data alongside socio-economic variables. These methodologies allow nuanced exploration structure determination across GBA. Results: Findings reveal cyclical fluctuation in network characterized by varying degrees cohesion among cities, indicating significant opportunities optimization. A “core-periphery” pattern emerges, with economically robust cities such as Hong Kong Macao at core, less developed like Huizhou Jiangmen on periphery. Cities Guangzhou Shenzhen play crucial mediator roles. The QAP further identifies six major factors: geographic proximity, economic development level, urbanization rate, industrial configuration, level technological innovation, environmental protection efforts, latter four having markedly positive impact relevance. Discussion: study’s underscore importance understanding role socioeconomic shaping these patterns. For policymakers stakeholders GBA, findings highlight necessity targeted intervention strategies that consider both unique position broader context. This approach can significantly contribute achieving objectives, promoting conservation, facilitating transition economy.

Язык: Английский

Technology-driven carbon reduction: Analyzing the impact of digital technology on China's carbon emission and its mechanism DOI
Yajun Liu, Xiuwu Zhang, Yang Shen

и другие.

Technological Forecasting and Social Change, Год журнала: 2023, Номер 200, С. 123124 - 123124

Опубликована: Дек. 21, 2023

Язык: Английский

Процитировано

92

Spatial-temporal evolution characteristics and spillover effects of carbon emissions from shipping trade in EU coastal countries DOI
Lang Xu, Zhihui Yang, Jihong Chen

и другие.

Ocean & Coastal Management, Год журнала: 2024, Номер 250, С. 107029 - 107029

Опубликована: Янв. 31, 2024

Язык: Английский

Процитировано

39

Spatial disparities and sources analysis of co-benefits between air pollution and carbon reduction in China DOI

Pin Xie,

Zhicheng Duan,

Tie Wei

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 354, С. 120433 - 120433

Опубликована: Фев. 27, 2024

Язык: Английский

Процитировано

18

Multiscale exploration of spatiotemporal dynamics in China's largest urban agglomeration: An interactive coupling perspective on human activity intensity and ecosystem health DOI

Suwen Xiong,

Fan Yang

Journal of Environmental Management, Год журнала: 2025, Номер 376, С. 124375 - 124375

Опубликована: Фев. 10, 2025

Язык: Английский

Процитировано

5

Spatiotemporal analysis of carbon emission efficiency across economic development stages and synergistic emission reduction in the Beijing-Tianjin-Hebei region DOI
Wei Qing, Lianqing Xue,

H. Y. Zhang

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 377, С. 124609 - 124609

Опубликована: Фев. 21, 2025

Язык: Английский

Процитировано

3

Carbon emission efficiency of 284 cities in China based on machine learning approach: Driving factors and regional heterogeneity DOI
Peixue Xing, Yanan Wang, Tao Ye

и другие.

Energy Economics, Год журнала: 2023, Номер 129, С. 107222 - 107222

Опубликована: Дек. 7, 2023

Язык: Английский

Процитировано

41

Industrial carbon emission forecasting considering external factors based on linear and machine learning models DOI
Ye Liang, Pei Du, Shubin Wang

и другие.

Journal of Cleaner Production, Год журнала: 2023, Номер 434, С. 140010 - 140010

Опубликована: Дек. 2, 2023

Язык: Английский

Процитировано

32

Co-drivers of Air Pollutant and CO2 Emissions from On-Road Transportation in China 2010–2020 DOI Open Access
Zhulin Qi, Yixuan Zheng,

Yueyi Feng

и другие.

Environmental Science & Technology, Год журнала: 2023, Номер 57(50), С. 20992 - 21004

Опубликована: Дек. 6, 2023

Co-controlling the emissions of air pollutants and CO2 from automobiles is crucial for addressing intertwined challenges pollution climate change in China. Here, we analyze synergetic characteristics pollutant China's on-road transportation identify co-drivers influencing these trends. Using detailed emission inventories employing index decomposition analysis, found that despite notable progress control, minimizing remains a formidable task. Over 2010-2020, estimated sectoral VOCs, NOx, PM2.5, CO declined by 49.9%, 25.9%, 75.2%, 63.5%, respectively, while increased 46.1%. Light-duty passenger vehicles heavy-duty trucks have been identified as primary contributors to carbon-pollution co-emissions, highlighting need tailored policies. The driver analysis indicates socioeconomic changes are drivers growth, policy controls, particularly advances efficiency, can facilitate co-reductions. Regional disparities emphasize refinement, including reducing dependency on fuel subsector prioritizing co-reduction strategies high-emission provinces freight subsector. Overall, our study confirms effectiveness control policies provides valuable insights future makers China other similarly positioned developing countries.

Язык: Английский

Процитировано

31

Exploring the spatial and temporal evolution of three-dimensional urban expansion: evidence from three urban agglomerations in China DOI

Yunying Liu,

Zhongzhi Sun, Vivian Yawei Guo

и другие.

International Journal of Urban Sciences, Год журнала: 2025, Номер unknown, С. 1 - 35

Опубликована: Янв. 16, 2025

Understanding urban expansion's spatial and temporal evolution is crucial for sustainable development. Previous research primarily focuses on two-dimensional perspectives, overlooking vertical This study investigates three-dimensional expansion in Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl (PRD) from 1998 to 2018 using Local Climate Zone (LCZ) data, standard deviation ellipse, compactness indicators, landscape ecology techniques. Findings reveal that BTH showed minimal variation direction. YRD predominantly expanded northwest. PRD eastward. Scattered patches with declining density characterize areas. Open lowrise buildings dominate the YRD, while transitioned compact open buildings. The increase corresponds rising complexity fragmentation. highrise buildings, though dominant, show a gradual decrease. offers comprehensive insights into dynamics of expansion, aiding developing more habitable efficient cities.

Язык: Английский

Процитировано

2

Solving the sustainable development dilemma in the Yellow River Basin of China: Water-energy-food linkages DOI
Yirui Wang, Nan Li, Jinxi Song

и другие.

Journal of Cleaner Production, Год журнала: 2025, Номер unknown, С. 144797 - 144797

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2