
Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 144309 - 144309
Опубликована: Ноя. 1, 2024
Язык: Английский
Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 144309 - 144309
Опубликована: Ноя. 1, 2024
Язык: Английский
Journal of Environmental Management, Год журнала: 2024, Номер 352, С. 120131 - 120131
Опубликована: Янв. 23, 2024
Язык: Английский
Процитировано
65Technological Forecasting and Social Change, Год журнала: 2024, Номер 200, С. 123178 - 123178
Опубликована: Янв. 3, 2024
Язык: Английский
Процитировано
25Journal of Environmental Management, Год журнала: 2024, Номер 362, С. 121253 - 121253
Опубликована: Июнь 1, 2024
Язык: Английский
Процитировано
7Fuzzy Optimization and Decision Making, Год журнала: 2024, Номер 23(3), С. 319 - 336
Опубликована: Июнь 17, 2024
Язык: Английский
Процитировано
7Energy, Год журнала: 2024, Номер 298, С. 131321 - 131321
Опубликована: Апрель 16, 2024
Язык: Английский
Процитировано
5npj Clean Water, Год журнала: 2024, Номер 7(1)
Опубликована: Авг. 8, 2024
Analyzing three-dimensional excitation-emission matrix (3D-EEM) spectra through machine learning models has drawn increasing attention, whereas the reliability of these remains unclear due to their "black box" nature. In this study, convolutional neural network (CNN) for classifying numbers fluorescent components in 3D-EEM was interpreted by gradient-weighted class activation mapping (Grad-CAM), guided Grad-CAM, and structured attention graphs (SAGs). Results showed that original CNN classifier with high classification accuracy may make a based on misleading non-fluorescence area spectra. By removing Rayleigh scatterings integrating block module (CBAM) classifiers, correct trained CBAM greatly increased from 17.6% 57.2%. This work formulated strategies improving classifiers associated environmental fields would provide great help water determination both natural artificial environments.
Язык: Английский
Процитировано
5Journal of Environmental Management, Год журнала: 2025, Номер 375, С. 124237 - 124237
Опубликована: Янв. 29, 2025
Язык: Английский
Процитировано
0Mathematics, Год журнала: 2025, Номер 13(3), С. 464 - 464
Опубликована: Янв. 30, 2025
Carbon price forecasting and pricing are critical for stabilizing carbon markets, mitigating investment risks, fostering economic development. This paper presents an advanced decomposition-integration framework which seamlessly integrates econometric models with machine learning techniques to enhance forecasting. First, the complete ensemble empirical mode decomposition adaptive noise (CEEMDAN) method is employed decompose data into distinct modal components, each defined by specific frequency characteristics. Then, Lempel–Ziv complexity dispersion entropy algorithms applied analyze these facilitating identification of their unique attributes. The subsequently employs GARCH predicting high-frequency components a gated recurrent unit (GRU) neural network optimized grey wolf algorithm low-frequency components. Finally, GRU model utilized integrate predictive outcomes nonlinearly, ensuring comprehensive precise forecast. Empirical evidence demonstrates that this not only accurately captures diverse characteristics different but also significantly outperforms traditional benchmark in accuracy. By optimizing optimizer (GWO) algorithm, enhances both prediction stability adaptability, while nonlinear integration approach effectively mitigates error accumulation. innovative offers scientifically rigorous efficient tool forecasting, providing valuable insights policymakers market participants trading.
Язык: Английский
Процитировано
0Sensors, Год журнала: 2025, Номер 25(5), С. 1278 - 1278
Опубликована: Фев. 20, 2025
Video portrait segmentation is essential for intelligent sensing systems, including human-computer interaction, autonomous navigation, and augmented reality. However, dynamic video environments introduce significant challenges, such as temporal variations, occlusions, computational constraints. This study introduces RVM+, an enhanced framework based on the Robust Matting (RVM) architecture. By incorporating Convolutional Gated Recurrent Units (ConvGRU), RVM+ improves consistency captures intricate dynamics across frames. Additionally, a novel knowledge distillation strategy reduces demands while maintaining high accuracy, making ideal real-time applications in resource-constrained environments. Comprehensive evaluations challenging datasets show that outperforms state-of-the-art methods both accuracy consistency. Key performance indicators MIoU, SAD, dtSSD effectively verify robustness efficiency of model. The integration ensures streamlined effective design with negligible trade-offs, highlighting its suitability practical deployment. makes strides sensor technology, providing high-performance, efficient, scalable solution segmentation. offers potential fields reality, robotics, analysis, also advancing development AI-enabled vision sensors.
Язык: Английский
Процитировано
0Environmental Science and Pollution Research, Год журнала: 2025, Номер unknown
Опубликована: Март 17, 2025
Язык: Английский
Процитировано
0