Effects of tropical cyclone intensity on spatial footprints of storm surges: an idealized numerical experiment DOI Creative Commons
Chuangwu Deng, Shifei Tu, Guoping Gao

и другие.

Environmental Research Letters, Год журнала: 2024, Номер 19(9), С. 094002 - 094002

Опубликована: Июль 24, 2024

Abstract Storm surges caused by tropical cyclones (TCs) have long ranked first among all types of marine disasters in casualties and economic losses, can lead to further regional exacerbation consequences stemming from these losses along different coastlines. Understanding the spatial footprints storm is thus highly important for developing effective risk management protection plans. To this end, we designed an ideal surge model based on Finite Volume Community Ocean Model explore relationship between TC intensity footprint surges, its intrinsic mechanism. The both positive negative were positively correlated with intensity; however, latter was more sensitive when weaker than CAT3 TC’s. average CAT1 574 km, CAT5 increasing 6% 25%, respectively, compared CAT1. 1407 18% 29%, decomposition mechanism analysis show that main contributing component total at south end storm’s landfall during time forerunner Ekman surge, whereas contribution normal north resurgence dominant. In addition, not components increased intensity, as did, similar surge. These quantitative analyses mechanisms provide a theoretical basis predicting evaluating risks.

Язык: Английский

Exploring infiltration effects on coastal urban flooding: Insights from nuisance to extreme events using 2D/1D hydrodynamic modeling and crowdsourced flood reports DOI Creative Commons
Sergio A. Barbosa,

Yidi Wang,

Jonathan L. Goodall

и другие.

The Science of The Total Environment, Год журнала: 2025, Номер 968, С. 178908 - 178908

Опубликована: Фев. 22, 2025

Язык: Английский

Процитировано

2

Emergency Response to Urban Flooding: An Assessment of Mitigation Performance and Cost-Effectiveness in Sponge City Construction DOI
Zhiwen Zheng, Xianqi Zhang,

Wenbao Qiao

и другие.

Water Resources Management, Год журнала: 2025, Номер unknown

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

2

A Bibliometric Analysis of Trends in Rainfall-Runoff Modeling Techniques for Urban Flood Mitigation (2005-2024) DOI Creative Commons

Abd. Rakhim Nanda,

Nurnawaty Nurnawaty,

Amrullah Mansida

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104927 - 104927

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

2

Machine learning and SHAP-based susceptibility assessment of storm flood in rapidly urbanizing areas: a case study of Shenzhen, China DOI Creative Commons
Juchao Zhao, Chunbo Zhang, Wang Jin

и другие.

Geomatics Natural Hazards and Risk, Год журнала: 2024, Номер 15(1)

Опубликована: Фев. 8, 2024

In recent years, urban flooding disasters have occurred frequently. Conducting research on flood susceptibility assessment is critical for prevention and renewal planning. However, determining how to effectively improve the accuracy of remains a challenging topic. Combining machine learning algorithms SHapely Additive exPlanations (SHAP) method, this study proposes an effective technical framework assessment. Firstly, in terms data selection, three types sources were considered comprehensively. Then, based above sources, five different experimental scenarios constructed feature preferences performed using SHAP. Finally, performance differences commonly used advanced are compared. The results show that it feasible use importance information provided by SHAP optimization. Compared with scenario without optimization, optimization greatly improves model. XGboost works best when paired optimal combination, its AUC value reaches maximum. indicate studies, selection algorithm combination features important reliability

Язык: Английский

Процитировано

9

A novel integrated urban flood risk assessment approach based on one-two dimensional coupled hydrodynamic model and improved projection pursuit method DOI
Lin Yan,

Hongwei Rong,

Weichao Yang

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 366, С. 121910 - 121910

Опубликована: Июль 24, 2024

Язык: Английский

Процитировано

9

Method for analyzing urban waterlogging mechanisms based on a 1D-2D water environment dynamic bidirectional coupling model DOI

Guangxue Luan,

Jingming Hou, Tian Wang

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 360, С. 121024 - 121024

Опубликована: Май 17, 2024

Язык: Английский

Процитировано

4

An Improved Coupled Hydrologic-Hydrodynamic Model for Urban Flood Simulations Under Varied Scenarios DOI
Siwei Cheng, Mingxiang Yang, Chenglin Li

и другие.

Water Resources Management, Год журнала: 2024, Номер 38(14), С. 5523 - 5539

Опубликована: Авг. 26, 2024

Язык: Английский

Процитировано

4

A multi-objective optimization and evaluation framework for LID facilities considering urban surface runoff and shallow groundwater regulation DOI

Yishuo Jiang,

Jiake Li, Jiayu Gao

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 478, С. 143921 - 143921

Опубликована: Окт. 9, 2024

Язык: Английский

Процитировано

4

Methodology for inflow and infiltration management utilizing PySWMM: A case study of the BX pumping station in Suzhou's central city area, China DOI

Xuechen Ben,

Fan Yang,

Ziwu Fan

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 72, С. 107597 - 107597

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Regional Flood Risk Assessment and Prediction Based on Environmental Attributes and Pipe Operational Characteristics DOI Open Access
Jinping Zhang,

Yirong Yang,

Lixin Zhang

и другие.

Water, Год журнала: 2025, Номер 17(10), С. 1477 - 1477

Опубликована: Май 14, 2025

Urban flood risk assessments play a crucial role in urban resilience and disaster management. This paper proposes comprehensive method for assessment prediction that is based on environmental attributes the operational characteristics of pipe networks. Using central area Zhengzhou as case study, an integrated evaluation index system was developed, entropy weight applied to quantify indicators. A loosely coupled RF-XGBoost model constructed predict different rainfall scenarios. The results indicate (1) overall study exhibits increasing trend from northeast southwest, with medium- high-risk zones being predominant; (2) spatial distribution pattern closely aligns but shows slight variations under influence network risks; (3) demonstrates superior predictive accuracy multi-factor coupling When characteristics, attributes, risks are comprehensively considered, Nash–Sutcliffe Efficiency (NSE) predictions improves 0.85 (when using only characteristics) 0.94. provides valuable insights technical support mitigating risks.

Язык: Английский

Процитировано

0