Enhancing local-scale groundwater quality predictions using advanced machine learning approaches DOI
Abhimanyu Singh Yadav, Abhay Raj, Basant Yadav

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 370, С. 122903 - 122903

Опубликована: Окт. 15, 2024

Язык: Английский

Exploring forest fire susceptibility and management strategies in Western Himalaya: Integrating ensemble machine learning and explainable AI for accurate prediction and comprehensive analysis DOI Creative Commons
Hoang Thi Hang, Javed Mallick, Saeed Alqadhi

и другие.

Environmental Technology & Innovation, Год журнала: 2024, Номер 35, С. 103655 - 103655

Опубликована: Май 5, 2024

Forest fires pose a significant threat to ecosystems and socio-economic activities, necessitating the development of accurate predictive models for effective management mitigation. In this study, we present novel machine learning approach combined with Explainable Artificial Intelligence (XAI) techniques predict forest fire susceptibility in Nainital district. Our innovative methodology integrates several robust — AdaBoost, Gradient Boosting Machine (GBM), XGBoost Random Deep Neural Network (DNN) as meta-model stacking framework. This not only utilises individual strengths these models, but also improves overall prediction performance reliability. By using XAI techniques, particular SHAP (SHapley Additive exPlanations) LIME (Local Interpretable Model-agnostic Explanations), improve interpretability provide insights into decision-making processes. results show effectiveness ensemble model categorising different zones: very low, moderate, high high. particular, identified extensive areas susceptibility, precision, recall F1 values underpinning their effectiveness. These achieved ROC AUC above 0.90, performing exceptionally well an 0.94. The are remarkably inclusion confidence intervals most important metrics all emphasises robustness reliability supports practical use management. Through summary plots, analyze global variable importance, revealing annual rainfall Evapotranspiration (ET) key factors influencing susceptibility. Local analysis consistently highlights importance rainfall, ET, distance from roads across models. study fills research gap by providing comprehensive interpretable modelling that our ability effectively manage risk is consistent environmental protection sustainable goals.

Язык: Английский

Процитировано

17

Surface water quality evaluation of Mahanadi and its Tributary Katha Jodi River, Cuttack District, Odisha, using WQI, PLSR, SRI, and geospatial techniques DOI Creative Commons
Abhijeet Das

Applied Water Science, Год журнала: 2025, Номер 15(2)

Опубликована: Янв. 23, 2025

Язык: Английский

Процитировано

5

Evaluating Cooling Effect of Blue-green Infrastructure on Urban Thermal Environment in a Metropolitan City: Using Geospatial and Machine Learning Techniques DOI
Md. Rejaul Islam,

Shahfahad,

Swapan Talukdar

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер 113, С. 105666 - 105666

Опубликована: Июль 14, 2024

Язык: Английский

Процитировано

15

Comprehensive Assessment of E. coli Dynamics in River Water Using Advanced Machine Learning and Explainable AI DOI

Santanu Mallik,

Bikram Saha,

Krishanu Podder

и другие.

Process Safety and Environmental Protection, Год журнала: 2025, Номер unknown, С. 106816 - 106816

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Interpreting optimised data-driven solution with explainable artificial intelligence (XAI) for water quality assessment for better decision-making in pollution management DOI
Javed Mallick, Saeed Alqadhi, Hoang Thi Hang

и другие.

Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(30), С. 42948 - 42969

Опубликована: Июнь 17, 2024

Язык: Английский

Процитировано

5

Groundwater quality prediction and risk assessment in Kerala, India: A machine-learning approach DOI

C. D. Aju,

A.L. Achu,

Maharoof P Mohammed

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 370, С. 122616 - 122616

Опубликована: Сен. 25, 2024

Язык: Английский

Процитировано

5

Assessing the impact of rainfall, topography, and human disturbances on nutrient levels using integrated machine learning and GAMs models in the Choctawhatchee River Watershed DOI
Shubo Fang, Matthew J. Deitch, Tesfay Gebretsadkan Gebremicael

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 375, С. 124361 - 124361

Опубликована: Янв. 31, 2025

Язык: Английский

Процитировано

0

Enhancing Evacuation Shelter Suitability in Compound Hazard-Prone Regions with a Bayesian Optimized Convolutional Neural Network Approach DOI
Somnath Bera,

Swapan Talukdar,

Kim-Anh Nguyen

и другие.

International Journal of Disaster Risk Reduction, Год журнала: 2025, Номер unknown, С. 105306 - 105306

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Beyond One-Size-Fits-All: Differentiated Green Development Assessment Integrating a Hybrid Approach in China's Yangtze River Economic Belt DOI
Linzi Li, Chenning Deng, Fang Zhu

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Artificial intelligence based detection and control strategies for river water pollution: A comprehensive review DOI
Deepak L. Bhatt, Mamata Swain, Dhananjay Yadav

и другие.

Journal of Contaminant Hydrology, Год журнала: 2025, Номер 271, С. 104541 - 104541

Опубликована: Март 17, 2025

Язык: Английский

Процитировано

0