
Ecotoxicology and Environmental Safety, Год журнала: 2024, Номер 290, С. 117570 - 117570
Опубликована: Дек. 24, 2024
Язык: Английский
Ecotoxicology and Environmental Safety, Год журнала: 2024, Номер 290, С. 117570 - 117570
Опубликована: Дек. 24, 2024
Язык: Английский
Environmental Technology & Innovation, Год журнала: 2024, Номер 35, С. 103655 - 103655
Опубликована: Май 5, 2024
Forest fires pose a significant threat to ecosystems and socio-economic activities, necessitating the development of accurate predictive models for effective management mitigation. In this study, we present novel machine learning approach combined with Explainable Artificial Intelligence (XAI) techniques predict forest fire susceptibility in Nainital district. Our innovative methodology integrates several robust — AdaBoost, Gradient Boosting Machine (GBM), XGBoost Random Deep Neural Network (DNN) as meta-model stacking framework. This not only utilises individual strengths these models, but also improves overall prediction performance reliability. By using XAI techniques, particular SHAP (SHapley Additive exPlanations) LIME (Local Interpretable Model-agnostic Explanations), improve interpretability provide insights into decision-making processes. results show effectiveness ensemble model categorising different zones: very low, moderate, high high. particular, identified extensive areas susceptibility, precision, recall F1 values underpinning their effectiveness. These achieved ROC AUC above 0.90, performing exceptionally well an 0.94. The are remarkably inclusion confidence intervals most important metrics all emphasises robustness reliability supports practical use management. Through summary plots, analyze global variable importance, revealing annual rainfall Evapotranspiration (ET) key factors influencing susceptibility. Local analysis consistently highlights importance rainfall, ET, distance from roads across models. study fills research gap by providing comprehensive interpretable modelling that our ability effectively manage risk is consistent environmental protection sustainable goals.
Язык: Английский
Процитировано
18Applied Water Science, Год журнала: 2025, Номер 15(2)
Опубликована: Янв. 23, 2025
Язык: Английский
Процитировано
5Process Safety and Environmental Protection, Год журнала: 2025, Номер unknown, С. 106816 - 106816
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Sustainable Cities and Society, Год журнала: 2024, Номер 113, С. 105666 - 105666
Опубликована: Июль 14, 2024
Язык: Английский
Процитировано
15Sustainability, Год журнала: 2025, Номер 17(5), С. 2250 - 2250
Опубликована: Март 5, 2025
Hydrology relates to many complex challenges due climate variability, limited resources, and especially, increased demands on sustainable management of water soil. Conventional approaches often cannot respond the integrated complexity continuous change inherent in system; hence, researchers have explored advanced data-driven solutions. This review paper revisits how artificial intelligence (AI) is dramatically changing most important facets hydrological research, including soil land surface modeling, streamflow, groundwater forecasting, quality assessment, remote sensing applications resources. In AI techniques could further enhance accuracy texture analysis, moisture estimation, erosion prediction for better management. Advanced models also be used as a tool forecast streamflow levels, therefore providing valuable lead times flood preparedness resource planning transboundary basins. quality, AI-driven methods improve contamination risk enable detection anomalies, track pollutants assist treatment processes regulatory practices. combined with open new perspectives monitoring resources at spatial scale, from forecasting storage variations. paper’s synthesis emphasizes AI’s immense potential hydrology; it covers latest advances future prospects field ensure
Язык: Английский
Процитировано
1Journal of Environmental Management, Год журнала: 2024, Номер 370, С. 122616 - 122616
Опубликована: Сен. 25, 2024
Язык: Английский
Процитировано
6Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(30), С. 42948 - 42969
Опубликована: Июнь 17, 2024
Язык: Английский
Процитировано
5Ecological Indicators, Год журнала: 2024, Номер 166, С. 112543 - 112543
Опубликована: Авг. 29, 2024
Язык: Английский
Процитировано
4Journal of Environmental Management, Год журнала: 2025, Номер 375, С. 124361 - 124361
Опубликована: Янв. 31, 2025
Язык: Английский
Процитировано
0International Journal of Disaster Risk Reduction, Год журнала: 2025, Номер unknown, С. 105306 - 105306
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0