Advanced multi-loop control for 4DOF robotic arms: Integrating digital twins, neural networks, and model predictive control DOI
Jiao Chen, Ahmed Kateb Jumaah Al-Nussairi,

Mustafa Habeeb Chyad

и другие.

Energy Reports, Год журнала: 2025, Номер 13, С. 4261 - 4279

Опубликована: Апрель 8, 2025

Язык: Английский

Efficiency assessment and scenario simulation of the water-energy-food system in the Yellow river basin, China DOI
Chenjun Zhang, Xiangyang Zhao, Changfeng Shi

и другие.

Energy, Год журнала: 2024, Номер 305, С. 132279 - 132279

Опубликована: Июль 2, 2024

Язык: Английский

Процитировано

5

Group dynamic game under bounded rationality in agreed transfer of China’s carbon trading secondary market DOI
Zhen Peng, Zitao Hong

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 110857 - 110857

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Incorporating key features from structured and unstructured data for enhanced carbon trading price forecasting with interpretability analysis DOI

Ming Jiang,

Jinxing Che, Shuying Li

и другие.

Applied Energy, Год журнала: 2025, Номер 382, С. 125301 - 125301

Опубликована: Янв. 8, 2025

Язык: Английский

Процитировано

0

Assessment and enhancement pathways of the Water-Energy-Food-Economy-Ecosystem Nexus in China's Yellow River Basin DOI
Chenjun Zhang,

Y. Wei,

Xiangyang Zhao

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 134492 - 134492

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A hybrid model for carbon price forecasting based on SSA-NSTransformer: Considering the role of multi-stage carbon reduction targets DOI
Jinchao Li, Yuwei Guo

Journal of Environmental Management, Год журнала: 2025, Номер 375, С. 124237 - 124237

Опубликована: Янв. 29, 2025

Язык: Английский

Процитировано

0

A Decomposition-Integration Framework of Carbon Price Forecasting Based on Econometrics and Machine Learning Methods DOI Creative Commons
Zhehao Huang,

Benhuan Nie,

Yuqiao Lan

и другие.

Mathematics, Год журнала: 2025, Номер 13(3), С. 464 - 464

Опубликована: Янв. 30, 2025

Carbon price forecasting and pricing are critical for stabilizing carbon markets, mitigating investment risks, fostering economic development. This paper presents an advanced decomposition-integration framework which seamlessly integrates econometric models with machine learning techniques to enhance forecasting. First, the complete ensemble empirical mode decomposition adaptive noise (CEEMDAN) method is employed decompose data into distinct modal components, each defined by specific frequency characteristics. Then, Lempel–Ziv complexity dispersion entropy algorithms applied analyze these facilitating identification of their unique attributes. The subsequently employs GARCH predicting high-frequency components a gated recurrent unit (GRU) neural network optimized grey wolf algorithm low-frequency components. Finally, GRU model utilized integrate predictive outcomes nonlinearly, ensuring comprehensive precise forecast. Empirical evidence demonstrates that this not only accurately captures diverse characteristics different but also significantly outperforms traditional benchmark in accuracy. By optimizing optimizer (GWO) algorithm, enhances both prediction stability adaptability, while nonlinear integration approach effectively mitigates error accumulation. innovative offers scientifically rigorous efficient tool forecasting, providing valuable insights policymakers market participants trading.

Язык: Английский

Процитировано

0

Enhanced accuracy and interpretability of nitrous oxide emission prediction of wastewater treatment plants through machine learning of univariate time series: A novel approach of learning feature reconstruction DOI
Zixuan Wang, Anlei Wei, K.S. Tang

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 71, С. 107263 - 107263

Опубликована: Фев. 15, 2025

Язык: Английский

Процитировано

0

Using the TSA-LSTM two-stage model to predict cancer incidence and mortality DOI Creative Commons
Rabnawaz Khan, Jie Wang

PLoS ONE, Год журнала: 2025, Номер 20(2), С. e0317148 - e0317148

Опубликована: Фев. 20, 2025

Cancer, the second-leading cause of mortality, kills 16% people worldwide. Unhealthy lifestyles, smoking, alcohol abuse, obesity, and a lack exercise have been linked to cancer incidence mortality. However, it is hard. Cancer lifestyle correlation analysis mortality prediction in next several years are used guide people's healthy lives target medical financial resources. Two key research areas this paper Data preprocessing sample expansion design Using experimental comparison, study chooses best cubic spline interpolation technology on original data from 32 entry points 420 converts annual into monthly solve problem insufficient prediction. Factor possible because sources indicate changing factors. TSA-LSTM Two-stage attention popular tool with advanced visualization functions, Tableau, simplifies paper's study. Tableau's testing findings cannot analyze predict time series data. LSTM utilized by optimization model. By commencing input feature attention, model technique guarantees that encoder converges subset sequence features during output features. As result, model's natural learning trend quality enhanced. The second step, performance maintains We can choose network improve forecasts based real-time performance. Validating source factor using Most cancers overlapping risk factors, excessive drinking, exercise, obesity breast, colorectal, colon cancer. A poor directly promotes lung, laryngeal, oral cancers, according visual tests. expected climb 18-21% between 2020 2025, 2021. Long-term projection accuracy 98.96 percent, smoking may be main causes.

Язык: Английский

Процитировано

0

How supply chain enterprises achieve coordination between green transition and profitability under the carbon trading framework DOI
Qinghua Mao,

Mingze Zhao,

Qilong Sun

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 377, С. 124588 - 124588

Опубликована: Фев. 21, 2025

Язык: Английский

Процитировано

0

Deconstructing customer satisfaction recipes: A dynamic configurational framework leveraging the power of online reviews in tourism contexts DOI
Yong Qin, C. L. Luo, Eric W.T. Ngai

и другие.

Tourism Management, Год журнала: 2025, Номер 110, С. 105181 - 105181

Опубликована: Март 17, 2025

Язык: Английский

Процитировано

0