Опубликована: Сен. 25, 2024
Язык: Английский
Опубликована: Сен. 25, 2024
Язык: Английский
Atmosphere, Год журнала: 2024, Номер 15(12), С. 1432 - 1432
Опубликована: Ноя. 28, 2024
Ambient air pollution affects human health, vegetative growth and sustainable socio-economic development. Therefore, data in Dezhou City China are collected from January 2014 to December 2023, multiple deep learning models used forecast PM2.5 concentrations. The ability of the is evaluated compared with observed using various statistical parameters. Although all eight can accomplish forecasting assignments, precision accuracy CNN-GRU-LSTM method 34.28% higher than that ANN method. result shows has best performance other seven models, achieving an R (correlation coefficient) 0.9686 RMSE (root mean square error) 4.6491 μg/m3. values CNN, GRU LSTM 57.00%, 35.98% 32.78% method, respectively. results reveal predictor remarkably improves performances benchmark overall forecasting. This research provides a new perspective for predictive ambient model provide scientific basis prevention control.
Язык: Английский
Процитировано
19Journal of Cleaner Production, Год журнала: 2024, Номер 468, С. 143042 - 143042
Опубликована: Июнь 28, 2024
Язык: Английский
Процитировано
11Journal of Environmental Management, Год журнала: 2024, Номер 359, С. 120976 - 120976
Опубликована: Апрель 27, 2024
Язык: Английский
Процитировано
5Expert Systems with Applications, Год журнала: 2024, Номер 264, С. 125867 - 125867
Опубликована: Ноя. 29, 2024
Язык: Английский
Процитировано
5Journal of Energy Storage, Год журнала: 2024, Номер 109, С. 115128 - 115128
Опубликована: Дек. 27, 2024
Язык: Английский
Процитировано
3Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 1 - 42
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Grey Systems Theory and Application, Год журнала: 2025, Номер unknown
Опубликована: Апрель 9, 2025
Purpose The traditional grey Bernoulli model often faces limitations when applied to pollutant concentration series, which may exhibit complex seasonal trends and varying data types. To address these challenges, we propose a structural extension of the by integrating binomial equation. This allows for more flexible framework suitable diverse datasets, especially those related environmental pollution. Design/methodology/approach First, time series is decomposed into four relatively stable sub-sequences. Binomial nonlinear models are then integrated predict prediction formula proposed derived directly from definition equation rather than solutions differential equation, thereby minimizing systematic errors. particle swarm optimization algorithm used estimate parameters, while least squares method linear parameters model. Findings BNGBM(1,1) forecast air quality index (AQI), sulfur dioxide (SO 2 ) particulate matter (PM2.5) seven major regions in China. results show that has superior accuracy compared competing models. predicts variations three pollution indicators selected period 2023–2024. concentrations all indices will decrease at different rates. Originality/value well suited sequences exhibiting quasi-exponential growth, whereas polynomial appropriate characterized saturated growth. integration two extends their applicability. In empirical study, despite development China, forecasting demonstrates effective performance indicators.
Язык: Английский
Процитировано
0Опубликована: Сен. 25, 2024
Язык: Английский
Процитировано
0