Опубликована: Авг. 9, 2024
Язык: Английский
Опубликована: Авг. 9, 2024
Язык: Английский
Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(4), С. 113142 - 113142
Опубликована: Май 28, 2024
Язык: Английский
Процитировано
3Alexandria Engineering Journal, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Journal of Water Process Engineering, Год журнала: 2025, Номер 72, С. 107637 - 107637
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Water, Год журнала: 2025, Номер 17(8), С. 1131 - 1131
Опубликована: Апрель 10, 2025
Excessive total nitrogen (TN) in water bodies leads to eutrophication, algal blooms, and hypoxia, which pose significant risks aquatic ecosystems human health. Accurate real-time TN prediction is crucial for effective quality management. This study presents an innovative approach that combines the distance correlation coefficient (DCC) feature selection with a coupled Attention-Convolutional Neural Network-Bidirectional Long Short-Term Memory (At-CBiLSTM) model predict concentrations Dongjiang River China. A dataset of 28,922 time-series data points was collected from seven sampling sites along River, spanning November 2020 February 2023. The DCC method identified conductivity, Permanganate Index (CODMn), phosphorus as most predictors levels. At-CBiLSTM model, optimized time step three, outperformed other models, including standalone (LSTM), Bi-directional LSTM (Bi-LSTM), Convolutional Network (CNN-LSTM), Attention-LSTM variants, achieving excellent performance following metrics: mean absolute error (MAE) = 0.032, squared (MSE) 0.005, percentage (MAPE) 0.218, root (RMSE) 0.045. Importantly, increasing number input features beyond three variables led decline accuracy, underscoring importance DCC-driven selection. results highlight combining deep learning particularly At-CBiLSTM, effectively captures nonlinear temporal dependencies improves accuracy. provides solid foundation monitoring can inform targeted pollution control strategies river ecosystems.
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2025, Номер 394, С. 126123 - 126123
Опубликована: Май 26, 2025
Язык: Английский
Процитировано
0Journal of environmental chemical engineering, Год журнала: 2025, Номер unknown, С. 117437 - 117437
Опубликована: Июнь 1, 2025
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Авг. 14, 2024
Язык: Английский
Процитировано
0Mathematics, Год журнала: 2024, Номер 12(24), С. 3896 - 3896
Опубликована: Дек. 10, 2024
Effective production prediction is vital for optimizing energy resource management, designing efficient extraction strategies, minimizing operational risks, and informing strategic investment decisions within the sector. This paper introduces a Dual-Stage Attention Temporal Convolutional Network (DA-TCN) model to enhance accuracy efficiency of gas forecasting, particularly wells in tight sandstone reservoirs. The DA-TCN architecture integrates feature temporal attention mechanisms (TCN) framework, improving model’s ability capture complex dependencies emphasize significant features, resulting robust forecasting performance across multiple time horizons. Application data from two Block T Sulige field China demonstrated 19% improvement RMSE 21% MAPE compared traditional TCN methods long-term forecasts. These findings confirm that dual-stage not only increases predictive but also enhances forecast stability over short-, medium-, By enabling more reliable reduces uncertainties, optimizes allocation, supports cost-effective management unconventional resources. Leveraging existing knowledge, this scalable data-efficient approach represents advancement delivering tangible economic benefits industry.
Язык: Английский
Процитировано
0Опубликована: Авг. 9, 2024
Язык: Английский
Процитировано
0