Balanced hydropower and ecological benefits in reservoir-river-lake system: An integrated framework with machine learning and game theory DOI
Shuangjun Liu,

Xiang Fu,

Yu Li

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 373, С. 123746 - 123746

Опубликована: Дек. 17, 2024

Язык: Английский

Assessing terrestrial water storage dynamics and multiple factors driving forces in China from 2005 to 2020 DOI
Renke Ji, Chao Wang, Aoxue Cui

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 370, С. 122464 - 122464

Опубликована: Сен. 11, 2024

Язык: Английский

Процитировано

4

Mixture of experts leveraging informer and LSTM variants for enhanced daily streamflow forecasting DOI

Zerong Rong,

Wei Sun, Yutong Xie

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132737 - 132737

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Physics-encoded deep learning for integrated modeling of watershed hydrology and reservoir operations DOI
Bofu Yu, Yi Zheng, Shaokun He

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133052 - 133052

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Soil Water Accounting Network (SWAN): a novel neural network for modeling conceptual hydrological processes DOI
Fang Zheng, Simin Qu,

Ziheng Li

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133562 - 133562

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Hydrologic Model Prediction Improvement in Karst Watersheds through Available Reservoir Capacity of Karst DOI Open Access
Lin Liao, Saeed Rad,

Junfeng Dai

и другие.

Sustainability, Год журнала: 2024, Номер 16(15), С. 6557 - 6557

Опубликована: Июль 31, 2024

This study aimed to enhance flood forecasting accuracy in the Liangfeng River basin, a small karst watershed Southern China, by incorporating Available Reservoir Capacity of Karst (ARCK) into HEC-HMS model. region is often threatened floods during rainy season, so an accurate forecast can help decision-makers better manage rivers. As crucial influencing factor on karstic runoff, ARCK overlooked hydrological models. The seasonal and volatile nature makes direct computation its specific values challenging. In this study, virtual reservoir for each sub-basin (total 17) was introduced model simulate storage release ARCK-induced runoff phenomena. Simulations via enhanced rainfall events with significant fluctuations water levels 2021–2022 revealed that Nash–Sutcliffe efficiency coefficient (NSE) average simulation improved more than 34%. Normally, rainfalls (even heavy precipitations) dry season either do not generate or cause negligible flow rates due long intervals. Conversely, relatively frequent light ones) wet result substantial runoff. Based observation, three distinct types reservoirs different retaining/releasing capacities were defined, reflecting variations both frequency volume seasons. real-time environmental variable, exhibits higher lower seasons, respectively, we avoid risk flooding according special effects.

Язык: Английский

Процитировано

1

Balanced hydropower and ecological benefits in reservoir-river-lake system: An integrated framework with machine learning and game theory DOI
Shuangjun Liu,

Xiang Fu,

Yu Li

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 373, С. 123746 - 123746

Опубликована: Дек. 17, 2024

Язык: Английский

Процитировано

0