Environmental Modelling & Software, Год журнала: 2024, Номер unknown, С. 106314 - 106314
Опубликована: Дек. 1, 2024
Язык: Английский
Environmental Modelling & Software, Год журнала: 2024, Номер unknown, С. 106314 - 106314
Опубликована: Дек. 1, 2024
Язык: Английский
Geomatics Natural Hazards and Risk, Год журнала: 2025, Номер 16(1)
Опубликована: Фев. 13, 2025
Язык: Английский
Процитировано
1Journal of Hydrology Regional Studies, Год журнала: 2025, Номер 58, С. 102285 - 102285
Опубликована: Март 4, 2025
Язык: Английский
Процитировано
1Geoscience Frontiers, Год журнала: 2024, Номер 16(1), С. 101960 - 101960
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
5Journal of Environmental Management, Год журнала: 2025, Номер 373, С. 123842 - 123842
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Sensors, Год журнала: 2025, Номер 25(8), С. 2503 - 2503
Опубликована: Апрель 16, 2025
Accurate flood monitoring and forecasting techniques are important continue to be developed for improved disaster preparedness mitigation. Flood estimation using satellite observations with deep learning algorithms is effective in detecting patterns environmental relationships that may overlooked by conventional methods. Soil Moisture Active Passive (SMAP) fractional water (FW) was used as a reference estimate areas long short-term memory (LSTM) model combination of soil moisture information, rainfall forecasts, floodplain topography. To perform modeling LSTM, datasets different spatial resolutions were resampled 30 m resolution bicubic interpolation. The model’s efficacy quantified validating the LSTM-based inundation area mask from Senti-nel-1 SAR images regions topographic characteristics. average under curve (AUC) value LSTM 0.93, indicating high accuracy FW. confusion matrix-derived metrics validate had high-performance ~0.9. SMAP FW showed optimal performance low-covered vegetation, seasonal variations flat regions. estimates show methodological promise proposed framework resilience.
Язык: Английский
Процитировано
0VIETNAM JOURNAL OF EARTH SCIENCES, Год журнала: 2025, Номер unknown
Опубликована: Апрель 16, 2025
The Mekong Basin is the most critical transboundary river basin in Asia. This provides an abundant source of fresh water essential for development agriculture, domestic consumption, and industry, as well production hydroelectricity, it also contributes to ensuring food security worldwide. region often subject floods that cause significant damage human life, society, economy. However, flood risk management challenges this are increasingly substantial due conflicting objectives between several countries data sharing. study integrates deep learning with optimization algorithms, namely Grasshopper Optimisation Algorithm (GOA), Adam Stochastic Gradient Descent (SGD), open-source datasets identify probably occurring basin, covering Vietnam Cambodia. Various statistical indices, Area Under Curve (AUC), root mean square error (RMSE), absolute (MAE), coefficient determination (R²), were used evaluate susceptibility models. results show proposed models performed AUC values above 0.8, specifying DNN-Adam model achieved 0.98, outperforming DNN-GOA (AUC = 0.89), DNN-SGD 0.87), XGB 0.82. Regions very high concentrated Delta along River findings supporting decision-makers or planners proposing appropriate mitigation strategies, planning policies, particularly watershed.
Язык: Английский
Процитировано
0Journal of Environmental Management, Год журнала: 2025, Номер 387, С. 125670 - 125670
Опубликована: Май 19, 2025
Язык: Английский
Процитировано
0Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133553 - 133553
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Environmental Modelling & Software, Год журнала: 2024, Номер unknown, С. 106314 - 106314
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0