Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Journal of Hydrology, Год журнала: 2025, Номер 652, С. 132677 - 132677
Опубликована: Янв. 10, 2025
Язык: Английский
Процитировано
2Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 27 - 42
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Journal of Hydrology Regional Studies, Год журнала: 2025, Номер 59, С. 102365 - 102365
Опубликована: Апрель 17, 2025
Язык: Английский
Процитировано
0Water, Год журнала: 2024, Номер 16(22), С. 3192 - 3192
Опубликована: Ноя. 7, 2024
The completeness of precipitation observation data is a crucial foundation for hydrological simulation, water resource analysis, and environmental assessment. Traditional imputation methods suffer from poor adaptability, lack precision, limited model diversity. Rapid accurate using available key challenge in monitoring. This study selected the Jiaojiang River basin southeastern Zhejiang Province China 1991 to 2020. were categorized based on various missing rates scenarios, namely MCR (Missing Completely Random), MR MNR Not Random). Imputation was conducted three types Artificial Intelligence (AI) (Backpropagation Neural Network (BPNN), Random Forest (RF), Support Vector Regression (SVR)), along with novel Multiple Linear (MLR) method built upon these algorithms. results indicate that constructed MLR achieves an average Pearson’s correlation coefficient (PCC) 0.9455, Nash–Sutcliffe Efficiency (NSE) 0.8329, Percent Bias (Pbias) 10.5043% across different rates. simulation higher NSE lower Pbias than other single AI models, thus effectively improving estimation performance. proposed this can be applied river basins improve quality support management.
Язык: Английский
Процитировано
0Electric Power Systems Research, Год журнала: 2024, Номер 239, С. 111214 - 111214
Опубликована: Ноя. 8, 2024
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0