Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 144124 - 144124
Опубликована: Окт. 1, 2024
Язык: Английский
Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 144124 - 144124
Опубликована: Окт. 1, 2024
Язык: Английский
Applied Energy, Год журнала: 2025, Номер 383, С. 125330 - 125330
Опубликована: Янв. 15, 2025
Язык: Английский
Процитировано
1Applied Energy, Год журнала: 2025, Номер 391, С. 125951 - 125951
Опубликована: Апрель 21, 2025
Язык: Английский
Процитировано
1Applied Energy, Год журнала: 2025, Номер 382, С. 125301 - 125301
Опубликована: Янв. 8, 2025
Язык: Английский
Процитировано
0Journal of Cleaner Production, Год журнала: 2025, Номер unknown, С. 144960 - 144960
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Energy Economics, Год журнала: 2025, Номер 144, С. 108350 - 108350
Опубликована: Фев. 28, 2025
Язык: Английский
Процитировано
0Energies, Год журнала: 2025, Номер 18(5), С. 1242 - 1242
Опубликована: Март 3, 2025
The energy stock price index maps the development trends in China’s market to a certain extent, and accurate forecasting of can effectively guide government regulate policies cope with external risks. vector error correction model (VECM) analyzes relationship between each indicator output, provides an explanation for way influences output indicator, uses this filter input indicators. forecast results China 2022–2024 showed upward trend, evaluation parameters MAE, MAPE, RMSE were 0.2422, 3.5704% 0.3529, respectively, higher efficiency than other comparative models. Finally, impact different indicators on Chinese was analyzed through scenario setting. show that oscillations real commodity factor (RCPF) global economic conditions (GECON) cause fluctuations indices evolves same manner as changes two international indices: MSCI World Index FTSE 100 Index.
Язык: Английский
Процитировано
0Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106302 - 106302
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Mathematics, Год журнала: 2025, Номер 13(10), С. 1624 - 1624
Опубликована: Май 15, 2025
The complex features of carbon price, such as volatility and nonlinearity, pose a serious challenge to accurately predict it. To this end, paper proposes novel forecasting framework for emission trading price based on nonlinear integration, including feature selection, deep learning model combination. Firstly, the historical series are collected collated, factors affecting analyzed. Secondly, data downscaled input variables screened using max-relevance min-redundancy. Then, three integrated models combined with neural network through integration construct hybrid prediction model, best performing is obtained. Finally, interval realized basis point prediction. experimental results show that outperforms other comparative in terms accuracy, stability statistical hypothesis testing, has good performance. In summary, proposed can not only provide high-precision market government enterprise decision makers, but also help investors optimize their strategies improve returns.
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 136768 - 136768
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер 289, С. 128300 - 128300
Опубликована: Май 30, 2025
Язык: Английский
Процитировано
0