Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Июнь 3, 2025
Язык: Английский
Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Июнь 3, 2025
Язык: Английский
Toxins, Год журнала: 2025, Номер 17(4), С. 171 - 171
Опубликована: Апрель 1, 2025
The aaccurate prediction of enzymes with environment detoxification functions is crucial, not only to achieve a better understanding bioremediation strategies, but also alleviate environmental pollution. In the present study, novel machine learning model was introduced which classifies by their toxin degradation ability. this model, two different sets data were used include that can catalyze as positive dataset and non-toxin-degrading negative dataset. Further, comparison multiple classifiers performed find best Random Forest (RF) classifier selected due its strong performance. To enhance accuracy, we combined RF Deep Neural Network (DNN), forming an ensemble effectively integrated both techniques. This combination achieved 95% precision, surpassing individual models. Our ensures high accuracy reliably differentiates toxin-degrading from non-degrading ones. study highlights power combining classical deep advance prediction. represents significant step in enzyme classification serves valuable resource for biotechnology, food nutrition, health applications.
Язык: Английский
Процитировано
0Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Июнь 3, 2025
Язык: Английский
Процитировано
0