Prediction of heat exchanger efficiency using laminar heat transfer in swirling flow of radiated graphene oxide with nano fluid additives using machine learning technique DOI

Shalini M. Patil,

Abilash Radhakrishnan, Sanjay R. Pawar

и другие.

Numerical Heat Transfer Part B Fundamentals, Год журнала: 2024, Номер unknown, С. 1 - 19

Опубликована: Июль 17, 2024

Nanotechnology has recently led to new possibilities for enhancing heat transfer in exchangers. The remarkable thermal characteristics of graphene oxide (GO)-based nanofluids with nanoscale additions have garnered significant attention particular. When and intricate flow patterns are involved, traditional analytical models frequently fail appropriately forecast the efficiency Analyzed phenomenon laminar a exchanger that swirling fluid dynamics, pressure drop, predicted condensation coefficient (HTC) LHT. functionalized radiated GO was chosen as nanomaterials present Pre-processing Data Methods managing outliers by machine learning (ML) models, like CLAHE algorithm. logarithmic mean temperature difference (LMTD) can be used determine driving power within exchanger. Dynamic Smagorinsky Model (DSLM) Wall-Adapting Local Eddy-viscosity (WALE) turbulence primarily designed capturing turbulent behavior flows. Kern technique Hagen–Poiseuille equation drop pumping needed shell tube through microtube based on Levenberg–Marquardt Momentum Algorithm predict Nusselt number prediction sensitivity HTC an LHT-trained ML model is evaluate performance. methods may effectively maximize performance setting nanofluid accuracy score 99%, demonstrating its exceptional predictive capabilities results great potential improve energy efficiency, save operating costs, advance sustainable practices various industrial applications.

Язык: Английский

Productivity prediction of a spherical distiller using a machine learning model and triangulation topology aggregation optimizer DOI
Mohamed Abd Elaziz, Fadl A. Essa, Hassan A. Khalil

и другие.

Desalination, Год журнала: 2024, Номер 585, С. 117744 - 117744

Опубликована: Май 18, 2024

Язык: Английский

Процитировано

23

Adaptive dynamic smart textiles for personal thermal-moisture management DOI
Rulin Liu, Yongzhen Wang, Weiqiang Fan

и другие.

European Polymer Journal, Год журнала: 2024, Номер 206, С. 112777 - 112777

Опубликована: Янв. 21, 2024

Язык: Английский

Процитировано

16

Prediction of Kerf and Groove Widths in CO2 Laser Cutting Process of PMMA Using Experimental and Machine Learning Methods DOI
Kutay Aydın, Levent Uğur

Experimental Techniques, Год журнала: 2025, Номер unknown

Опубликована: Март 3, 2025

Язык: Английский

Процитировано

2

Experimental investigation and machine learning modeling using LSTM and special relativity search of friction stir processed AA2024/Al2O3 nanocomposites DOI Creative Commons
Fathi Djouider, Mohamed Abd Elaziz, Abdulsalam M. Alhawsawi

и другие.

Journal of Materials Research and Technology, Год журнала: 2023, Номер 27, С. 7442 - 7456

Опубликована: Ноя. 1, 2023

In this study, the friction stir technique is proposed to process aluminum nanocomposites reinforced with alumina nanoparticles. The effects of different processing parameters, including spindle speed (900–1800 rpm), feed (10–20 mm/min), and number passes (1–3) on mechanical dynamic properties processed samples were investigated. investigated ultimate tensile strength, yield natural frequency, damping ratio. An advanced machine learning approach composed a long short-term memory model optimized by special relativity search algorithm was developed predict conditions. adequacy tested compared three other models; predicted in good agreement measured properties. outperformed models found be powerful prediction tool for predicting conditions obtain high-quality nanocomposite samples. succeeded ratio R2 0.912, 0.952, 0.951, 0.987, respectively. obtained results showed that samples' loss factor increase passes, while shear modulus, complex modulus decrease passes. Thus, can used improve materials.

Язык: Английский

Процитировано

18

Prediction of milled surface characteristics of carbon fiber-reinforced polyetheretherketone using an optimized machine learning model by gazelle optimizer DOI
Wajdi Rajhi, Ahmed Mohamed Mahmoud Ibrahim, Abdel‐Hamid I. Mourad

и другие.

Measurement, Год журнала: 2023, Номер 222, С. 113627 - 113627

Опубликована: Окт. 4, 2023

Язык: Английский

Процитировано

17

Experimental study and neural network model based prediction of layer thickness influence on LPBF IN625 single track geometry DOI
D. Simson, C. P. Paul,

S. Kanmani Subbu

и другие.

Optics & Laser Technology, Год журнала: 2024, Номер 173, С. 110543 - 110543

Опубликована: Янв. 16, 2024

Язык: Английский

Процитировано

6

Optimization of laser beam parameters during processing of ASA 3D-printed plates DOI Creative Commons

John D. Kechagias,

Konstantinos Ninikas,

Foteini Vakouftsi

и другие.

The International Journal of Advanced Manufacturing Technology, Год журнала: 2023, Номер 130(1-2), С. 527 - 539

Опубликована: Ноя. 30, 2023

Abstract New developments in manufacturing processes impose the need for experimental studies concerning determination of beneficial process-related parameter settings and optimization objectives related to quality efficiency. This work aims improve cutting geometry, surface texture, arithmetic roughness average case post-processing filament material extrusion 3D-printed acrylonitrile styrene acrylate (ASA) thin plates by a low-power CO 2 laser apparatus. was selected owing its unique properties thin-walled customized constructions. Three parameters, namely focal distance, plate thickness, speed, were examined with reference Box-Behnken design experiments (BBD) regression modeling. Four responses considered: mean kerf width, Wm (mm); down Wd upper Wu Ra (μm) cut surfaces. Different models tested their efficiency terms predicting an emphasis on full quadratic regression. The results showed that distance 6.5 mm 16 mm/s speed optimizes all metrics three thicknesses. achieved adequate correlation among independent parameters objectives, proving they can be used process support practical applications.

Язык: Английский

Процитировано

13

Modeling of a hybrid stirling engine/desalination system using an advanced machine learning approach DOI Creative Commons
Ghazi Alsoruji, Ali Basem, Walaa Abd‐Elaziem

и другие.

Case Studies in Thermal Engineering, Год журнала: 2024, Номер 60, С. 104645 - 104645

Опубликована: Июнь 5, 2024

In this study, the performance of a hybrid power/freshwater generation system is modeled using coupled artificial neural network (ANN) model with pelican algorithm (PA). The proposed composed Stirling engine fixed to solar dish, desalination unit, and thermoelectric cooler. used generate electricity required operate electrical-powered components as well preheat saline water. cooler supply water additional heat cool condensation surface unit. in terms yield, generated power, efficiency was considered model's output; while irradiance dish diameter were inputs. addition algorithm, conventional gradient descent optimizer employed an internal ANN model. prediction accuracy two models compared based on different measures. ANN-PA outperformed predicting efficiency. computed root mean square errors (1.982 L, 104.863 W, 1.227%) (0.019 1.673 0.047%) for efficiency, respectively.

Язык: Английский

Процитировано

5

Leveraging AI for energy-efficient manufacturing systems: Review and future prospectives DOI Creative Commons
Mohamed Abadi, Chao Liu, Mingyu Zhang

и другие.

Journal of Manufacturing Systems, Год журнала: 2024, Номер 78, С. 153 - 177

Опубликована: Ноя. 29, 2024

Язык: Английский

Процитировано

5

Investigation on Polymer Hybrid Composite Through CO2 Laser Machining for Precise Machining Conditions DOI
K. Nirmal Kumar, П. Динеш Бабу

International Journal of Precision Engineering and Manufacturing, Год журнала: 2024, Номер 25(5), С. 1043 - 1061

Опубликована: Фев. 17, 2024

Язык: Английский

Процитировано

4