DaFiF: A Complete Dataset for Fish's Freshness Problems DOI Creative Commons
Eko Prasetyo, Nanik Suciati, Ni Putu Sutramiani

и другие.

Data in Brief, Год журнала: 2024, Номер 57, С. 111016 - 111016

Опубликована: Окт. 10, 2024

The fish are incorporated with ice to preserve their freshness when sold on the market. Ordinary people can only detect its some basic knowledge. Therefore, non-destructive inspection is an innovative solution help. This dataset provides a medium develop system for detection of freshness. There three data variations: sensor data, images, and organoleptic examination. includes species: mackerel, tilapia, tuna, using 21 each species. Data generation was carried out 11 days, where 800 MQ (Metal Oxide) 135 TGS (Taguchi Gas Sensor) 2602 80 images were generated every day. Organoleptic examinations Indonesian National Standard (SNI) 2729-2013 six parameters: eyes, gills, body surface mucus, meat, smell, textures. be used system, regression modeling estimate deterioration in freshness, standard grouping classes.

Язык: Английский

Reviews on the development of digital intelligent fisheries technology in aquaculture DOI
P. Li,

Haibin Han,

Shengmao Zhang

и другие.

Aquaculture International, Год журнала: 2025, Номер 33(3)

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

2

Sugar detection in adulterated honey using hyper-spectral imaging with stacking generalization method DOI
Madhusudan G. Lanjewar, Kamini G. Panchbhai, L. B. Patle

и другие.

Food Chemistry, Год журнала: 2024, Номер 450, С. 139322 - 139322

Опубликована: Апрель 9, 2024

Язык: Английский

Процитировано

14

Small size CNN (CAS-CNN), and modified MobileNetV2 (CAS-MODMOBNET) to identify cashew nut and fruit diseases DOI
Kamini G. Panchbhai, Madhusudan G. Lanjewar,

Vishant V. Malik

и другие.

Multimedia Tools and Applications, Год журнала: 2024, Номер unknown

Опубликована: Апрель 2, 2024

Язык: Английский

Процитировано

13

Machine learning based technique to predict the water adulterant in milk using portable near infrared spectroscopy DOI
Madhusudan G. Lanjewar, Jivan S. Parab, Rajanish K. Kamat

и другие.

Journal of Food Composition and Analysis, Год журнала: 2024, Номер 131, С. 106270 - 106270

Опубликована: Апрель 22, 2024

Язык: Английский

Процитировано

8

Machine vision combined with deep learning–based approaches for food authentication: An integrative review and new insights DOI
Che Shen, Ran Wang,

Hira Nawazish

и другие.

Comprehensive Reviews in Food Science and Food Safety, Год журнала: 2024, Номер 23(6)

Опубликована: Ноя. 1, 2024

Food fraud undermines consumer trust, creates economic risk, and jeopardizes human health. Therefore, it is essential to develop efficient technologies for rapid reliable analysis of food quality safety authentication. Machine vision-based methods have emerged as promising solutions the nondestructive authenticity quality. The Industry 4.0 revolution has introduced new trends in this field, including use deep learning (DL), a subset artificial intelligence, which demonstrates robust performance generalization capabilities, effectively extracting features, processing extensive data. This paper reviews recent advances machine vision various DL-based algorithms authentication, DL lightweight DL, used such adulteration identification, variety freshness detection, identification by combining them with system or smartphones portable devices. review explores limitations challenges include overfitting, interpretability, accessibility, data privacy, algorithmic bias, design deployment DLs, miniaturization sensing Finally, future developments field are discussed, development real-time detection systems that incorporate combination expansion databases. Overall, techniques expected enable faster, more affordable, accurate authentication methods.

Язык: Английский

Процитировано

8

Hybrid methods for detection of starch in adulterated turmeric from colour images DOI
Madhusudan G. Lanjewar,

Satyam S. Asolkar,

Jivan S. Parab

и другие.

Multimedia Tools and Applications, Год журнала: 2024, Номер 83(25), С. 65789 - 65814

Опубликована: Янв. 19, 2024

Язык: Английский

Процитировано

4

Quality non-destructive sorting of large yellow croaker based on image recognition DOI
Xudong Wu,

Yingke Chu,

Zongmin Wang

и другие.

Journal of Food Engineering, Год журнала: 2024, Номер 383, С. 112227 - 112227

Опубликована: Июль 15, 2024

Язык: Английский

Процитировано

4

Quality Determination of Frozen-Thawed Shrimp Using Machine Learning Algorithms Powered by Explainable Artificial Intelligence DOI Creative Commons
İsmail Yüksel GENÇ, Remzi Gürfidan,

Enes Açikgözoğlu

и другие.

Food Analytical Methods, Год журнала: 2025, Номер unknown

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

0

XAI based Enhanced Fish Disease Detection using Multi-Feature Extraction in Varied Color Spaces DOI Open Access

Natasha Pati,

Atul Sharma,

Junali Jasmine Jena

и другие.

Procedia Computer Science, Год журнала: 2025, Номер 258, С. 2909 - 2919

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Enhancement of tea leaf diseases identification using modified SOTA models DOI
Kamini G. Panchbhai, Madhusudan G. Lanjewar

Neural Computing and Applications, Год журнала: 2024, Номер unknown

Опубликована: Дек. 5, 2024

Язык: Английский

Процитировано

3