TrAC Trends in Analytical Chemistry, Год журнала: 2024, Номер 174, С. 117678 - 117678
Опубликована: Март 30, 2024
Язык: Английский
TrAC Trends in Analytical Chemistry, Год журнала: 2024, Номер 174, С. 117678 - 117678
Опубликована: Март 30, 2024
Язык: Английский
Chemosphere, Год журнала: 2022, Номер 310, С. 136751 - 136751
Опубликована: Окт. 6, 2022
In the recent era, increasing persistence of hazardous contaminants is badly affecting globe in many ways. Due to high environmental contamination, almost every second species on earth facing worst issue their survival. Advances newer remediation approaches may help enhance bioremediation's quality, while conventional procedures have failed remove compounds from environment. Chemical and physical waste cleanup been used current circumstances; however, these methods are costly harmful Thus, there has a rise use bioremediation due an increase which led development genetically engineered microbes (GEMs). It safer more cost-effective microorganisms rather than alternative methods. GEMs created by introducing stronger protein into bacteria through biotechnology or genetic engineering desired trait. Biodegradation oil spills, halobenzoates naphthalenes, toluenes, trichloroethylene, octanes, xylenes etc. accomplished using such bacteria, fungus, algae. Biotechnologically induced powerful naturally occurring ones degrade faster because they can quickly adapt new pollutants encounter co-metabolize. Genetic worthy process that will benefit environment ultimately health our people.
Язык: Английский
Процитировано
167Food and Chemical Toxicology, Год журнала: 2022, Номер 165, С. 113176 - 113176
Опубликована: Май 26, 2022
Язык: Английский
Процитировано
91Chemical Engineering Journal, Год журнала: 2022, Номер 451, С. 138080 - 138080
Опубликована: Июль 13, 2022
Язык: Английский
Процитировано
89Nanomaterials, Год журнала: 2023, Номер 13(3), С. 546 - 546
Опубликована: Янв. 29, 2023
Nanomaterials have attracted attention for application in photocatalytic hydrogen production because of their beneficial properties such as high specific surface area, attractive morphology, and light absorption. Furthermore, is a clean green source energy that may help to resolve the existing crisis increasing environmental pollution caused by consumption fossil fuels. Among various methods, water splitting most significant it utilizes solar light, freely available throughout world, activated via semiconductor nanomaterial catalysts. Various types photocatalysts are developed this purpose, including carbon-based transition-metal-based photocatalysts, each has its advantages disadvantages. The present review highlights basic principle techniques thermochemical process, electrocatalytic direct enhance production. Moreover, modification strategies band gap engineering, alloys, multiphoton been reviewed. Z- S-schemes heterojunction were also Ultimately, developing efficient, practical, highly novel visible-light-harvesting will be discussed, addition challenges involved. This can provide researchers with reference current state affairs, motivate them develop new materials generation.
Язык: Английский
Процитировано
63Ultrasonics Sonochemistry, Год журнала: 2023, Номер 95, С. 106409 - 106409
Опубликована: Апрель 18, 2023
Sonocatalysis has attracted excellent research attention to eradicate hazardous pollutants from the environment effectively. This work synthesised an organic/inorganic hybrid composite catalyst by coupling Fe3O4@MIL-100(Fe) (FM) with ZnS nanoparticles using solvothermal evaporation method. Remarkably, material delivered significantly enhanced sonocatalytic efficiency for removing tetracycline (TC) antibiotics in presence of H2O2 compared bare nanoparticles. By adjusting different parameters such as TC concentration, dosage and amount, optimized (20 %Fe3O4@MIL-100(Fe)/ZnS) removed 78.25% antibiotic 20 min at cost 1 mL H2O2. These much superior activities are attributed efficient interface contact, effective charge transfer, accelerated transport capabilities strong redox potential acoustic catalytic performance FM/ZnS systems. Based on various characterization, free radical capture experiments energy band structures, we proposed a mechanism degradation based S-scheme heterojunctions Fenton like reactions. will provide important reference developing ZnS-based nanomaterials study sonodegradation pollutants.
Язык: Английский
Процитировано
54Chemical Engineering Journal, Год журнала: 2024, Номер 486, С. 150217 - 150217
Опубликована: Март 7, 2024
Язык: Английский
Процитировано
20Ecological Engineering, Год журнала: 2024, Номер 207, С. 107338 - 107338
Опубликована: Июль 31, 2024
Язык: Английский
Процитировано
18Materials Research Bulletin, Год журнала: 2022, Номер 154, С. 111924 - 111924
Опубликована: Июнь 7, 2022
Язык: Английский
Процитировано
45Applied Catalysis B Environment and Energy, Год журнала: 2022, Номер 317, С. 121706 - 121706
Опубликована: Июль 8, 2022
Язык: Английский
Процитировано
45Scientific Reports, Год журнала: 2022, Номер 12(1)
Опубликована: Сен. 30, 2022
Abstract Arsenic in drinking water is a serious threat for human health due to its toxic nature and therefore, eliminating highly necessary. In this study, the ability of different novel robust machine learning (ML) approaches, including Light Gradient Boosting Machine (LightGBM), Extreme Boosting, Decision Tree, Random Forest was implemented predict adsorptive removal arsenate [As(V)] from wastewater over 13 metal–organic frameworks (MOFs). A large experimental dataset collected under various conditions. The adsorbent dosage, contact time, initial arsenic concentration, surface area, temperature, solution pH, presence anions were considered as input variables, As(V) selected output models. developed models evaluated using statistical criteria. obtained results indicated that LightGBM model provided most accurate reliable response adsorption by MOFs possesses R 2 , RMSE, STD, AAPRE (%) 0.9958, 2.0688, 0.0628, 2.88, respectively. expected trends with increasing coexistence predicted reasonably model. Sensitivity analysis revealed process adversely relates concentration directly depends on area dosage. This study proves ML approaches are capable manage complicated problems datasets can be affordable alternatives expensive time-consuming treatment processes.
Язык: Английский
Процитировано
44