Enhancing sewage flow prediction using an integrated improved SSA-CNN-Transformer-BiLSTM model DOI Creative Commons

Jiawen Ye,

Lei Dai,

HaiYing Wang

и другие.

AIMS Mathematics, Год журнала: 2024, Номер 9(10), С. 26916 - 26950

Опубликована: Янв. 1, 2024

<p>Accurate prediction of sewage flow is crucial for optimizing treatment processes, cutting down energy consumption, and reducing pollution incidents. Current models, including traditional statistical models machine learning have limited performance when handling nonlinear high-noise data. Although deep excel in time series prediction, they still face challenges such as computational complexity, overfitting, poor practical applications. Accordingly, this study proposed a combined model based on an improved sparrow search algorithm (SSA), convolutional neural network (CNN), transformer, bidirectional long short-term memory (BiLSTM) prediction. Specifically, the CNN part was responsible extracting local features from series, Transformer captured global dependencies using attention mechanism, BiLSTM performed temporal processing features. The SSA optimized model's hyperparameters to improve accuracy generalization capability. validated dataset actual plant. Experimental results showed that introduced mechanism significantly enhanced ability handle data, effectively hyperparameter selection, improving training efficiency. After introducing SSA, CNN, modules, $ {R^{\text{2}}} increased by 0.18744, RMSE (root mean square error) decreased 114.93, MAE (mean absolute 86.67. difference between predicted peak/trough monitored within 3.6% appearance 2.5 minutes away time. By employing multi-model fusion approach, achieved efficient accurate highlighting potential application prospects field treatment.</p>

Язык: Английский

A probabilistic deep learning approach to enhance the prediction of wastewater treatment plant effluent quality under shocking load events DOI Creative Commons
Hailong Yin, Yongqi Chen, Jinglin Zhou

и другие.

Water Research X, Год журнала: 2024, Номер 26, С. 100291 - 100291

Опубликована: Дек. 3, 2024

Sudden shocking load events featuring significant increases in inflow quantities or concentrations of wastewater treatment plants (WWTPs), are a major threat to the attainment treated effluents discharge quality standards. To aid real-time decision-making for stable WWTP operations, this study developed probabilistic deep learning model that comprises encoder-decoder long short-term memory (LSTM) networks with added capacity producing probability predictions, enhance robustness effluent prediction under such events. The LSTM (P-ED-LSTM) was tested an actual WWTP, where bihourly total nitrogen performed and compared classical models, including LSTM, gated recurrent unit (GRU) Transformer. It found events, P-ED-LSTM could achieve 49.7% improvement accuracy predictions concentration GRU, A higher quantile data from output, indicated value more approximate real quality. also exhibited predictive power next multiple time steps scenarios. captured approximately 90% over-limit discharges up 6 hours ahead, significantly outperforming other models. Therefore, model, its robust adaptability fluctuations, has potential broader applications across WWTPs different processes, as well providing strategies system regulation emergency conditions.

Язык: Английский

Процитировано

4

Temporal fusion transformer model for predicting differential pressure in reverse osmosis process DOI
Seunghyeon Lee,

Jaegyu Shim,

Jinuk Lee

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 70, С. 106914 - 106914

Опубликована: Янв. 9, 2025

Язык: Английский

Процитировано

0

Multi-modal learning-based algae phyla identification using image and particle modalities DOI

Do Hyuck Kwon,

Min Jun Lee,

Heewon Jeong

и другие.

Water Research, Год журнала: 2025, Номер 275, С. 123172 - 123172

Опубликована: Янв. 22, 2025

Язык: Английский

Процитировано

0

Efficient and easily recyclable photocatalytic reduction of Se(IV) from wastewater using stable TiO2/BiOBr/cloth: Mechanism insight and machine learning modeling DOI

Yu Liang,

Yanzhen Yin,

Qin Deng

и другие.

Separation and Purification Technology, Год журнала: 2024, Номер 352, С. 128021 - 128021

Опубликована: Май 24, 2024

Язык: Английский

Процитировано

3

Determining water and solute permeability of reverse osmosis membrane using a data-driven machine learning pipeline DOI Creative Commons
Sung Ho Chae, Seok Won Hong, Moon Son

и другие.

Journal of Water Process Engineering, Год журнала: 2024, Номер 64, С. 105634 - 105634

Опубликована: Июнь 15, 2024

Язык: Английский

Процитировано

3

Distribution coefficient prediction using multimodal machine learning based on soil adsorption factors, XRF, and XRD spectrum data DOI

Seongyeon Na,

Heewon Jeong,

Ilgook Kim

и другие.

Journal of Hazardous Materials, Год журнала: 2024, Номер 478, С. 135285 - 135285

Опубликована: Июль 22, 2024

Язык: Английский

Процитировано

3

Photodegradation of polychlorinated biphenyls (PCBs) on suspended particles from the Yellow River under sunlight irradiation: QSAR model and mechanism analysis DOI
Jianqiao Xu,

Junyan Wei,

Xinyuan Wei

и другие.

Water Research, Год журнала: 2024, Номер 267, С. 122547 - 122547

Опубликована: Сен. 30, 2024

Язык: Английский

Процитировано

3

Micro and nano-sized bubbles for sanitation and water reuse: from fundamentals to application DOI
Abudukeremu Kadier, Gülizar KURTOĞLU AKKAYA, Raghuveer Singh

и другие.

Frontiers of Environmental Science & Engineering, Год журнала: 2024, Номер 18(12)

Опубликована: Сен. 30, 2024

Язык: Английский

Процитировано

2

From colonial clusters to colonial sheaths: Imaging flow cytometry analysis of Microcystis morphospecies dynamics in mesocosm and links to CyanoHABs management DOI Creative Commons

Adina Zhumakhanova,

Yersultan Mirasbekov,

Ayagoz Meirkhanova

и другие.

Ecological Indicators, Год журнала: 2024, Номер 163, С. 112100 - 112100

Опубликована: Май 8, 2024

The alarming increase in the frequency of blooms Microcystis freshwater lakes and reservoirs occurs worldwide, with major implications for their ecosystem functioning water quality. dominance is tightly related to colonial formation by Microcystis. However, studies development morphospecies are rare. This research applied FlowCAM-based imaging flow cytometry analyze mesocosms mimicking eutrophic shallow effect temperature changes. A significant positive association was found between M. ichtyoblabe, aeruginosa, smithii colonies, particularly high-temperature tanks, suggesting that these belong one ecocluster, which supports hypothesis central transition pathways small clusters cells represented an important stage sequence bloom were associated forms. correlation analysis showed higher pH positively correlated abundance M.wesenbergii independently sheaths' abundances increased following a maximum abundance, reaching numbers (thousands), majority sheaths contained at least some cells. We hypothesize may be crucial spp. dispersal represent obligatory colonies development. protect against environmental stress factors, improve cell survival low nutrient levels, participate spreading. Our findings can applicable early CyanoHAB detection management dispersal.

Язык: Английский

Процитировано

1

Spatial prediction of groundwater salinity in multiple aquifers of the Mekong Delta region using explainable machine learning models DOI

Heewon Jeong,

Ather Abbas, Hyo Gyeom Kim

и другие.

Water Research, Год журнала: 2024, Номер 266, С. 122404 - 122404

Опубликована: Сен. 6, 2024

Язык: Английский

Процитировано

0