Earth Science Informatics, Год журнала: 2023, Номер 17(1), С. 193 - 209
Опубликована: Ноя. 24, 2023
Язык: Английский
Earth Science Informatics, Год журнала: 2023, Номер 17(1), С. 193 - 209
Опубликована: Ноя. 24, 2023
Язык: Английский
Remote Sensing, Год журнала: 2023, Номер 15(8), С. 1983 - 1983
Опубликована: Апрель 9, 2023
The development of a sustainable water quality monitoring system at national scale remains big challenge until today, acting as hindrance for the efficient implementation Water Framework Directive (WFD). This work provides valuable insights into current state-of-the-art Earth Observation (EO) tools and services, proposing synergistic use innovative remote sensing technologies, in situ sensors, databases, with ultimate goal to support European Member States effective WFD implementation. proposed approach is based on recent research scientific analysis six-year period (2017–2022) after reviewing 71 peer-reviewed articles international journals coupled results 11 European-founded projects related EO WFD. Special focus placed data sources (spaceborne, situ, etc.), sensors use, observed Quality Elements well computer science techniques (machine/deep learning, artificial intelligence, etc.). combination different technologies can offer, among other things, low-cost monitoring, an increase monitored per body, minimization percentage bodies unknown ecological status.
Язык: Английский
Процитировано
12Aquaculture, Год журнала: 2024, Номер 589, С. 740965 - 740965
Опубликована: Апрель 21, 2024
Язык: Английский
Процитировано
5Environment Development and Sustainability, Год журнала: 2023, Номер unknown
Опубликована: Дек. 19, 2023
Язык: Английский
Процитировано
10Ecological Indicators, Год журнала: 2024, Номер 158, С. 111615 - 111615
Опубликована: Янв. 1, 2024
Exploring the changes and drivers of open-surface water bodies is essential for well-being humanity in face global climate change. As one core areas Qinghai-Tibet Plateau (QTP), headwater region Yangtze, Yellow, Lancang Rivers a source billions people Asia. However, previous studies failed to provide complete data watershed-level analysis this region. Utilizing Google Earth Engine platform vegetation-water algorithm, we interpreted from all available Landsat surface reflectance generated annual 30-m body frequency maps 1987–2021, which dataset study area. Compared Joint Research Centre's Global Surface Water dataset, our maintains consistency 90.1 % pixels achieved correct classification 74.6 within inconsistent areas. The perennial area exhibited an increase 232,335 293,534 ha. Instead, seasonal notably declined 223,809 182,003 Yangtze River shows bodies, with no significant variation bodies. Yellow experiences but decrease Remarkably, region, lower density, both decreased by 36.8 48.8 %, respectively. divergent Three are primarily attributed spatial heterogeneity temperature effects on Anticipated increases expected amplify these differences. Our findings suggest that climate-driven ongoing QTP, threatening security densely populated East Southeast Asia future.
Язык: Английский
Процитировано
4The Science of The Total Environment, Год журнала: 2024, Номер 944, С. 173840 - 173840
Опубликована: Июнь 12, 2024
Язык: Английский
Процитировано
4ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2025, Номер 220, С. 661 - 691
Опубликована: Янв. 25, 2025
Язык: Английский
Процитировано
0ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2025, Номер 221, С. 280 - 298
Опубликована: Фев. 16, 2025
Язык: Английский
Процитировано
0Remote Sensing, Год журнала: 2025, Номер 17(5), С. 742 - 742
Опубликована: Фев. 20, 2025
Due to the inherent limitations in remote sensing image quality, seasonal variations, and radiometric inconsistencies, river extraction based on classification often results omissions. These challenges are particularly pronounced detection of narrow complex networks, where fine features frequently underrepresented, leading fragmented discontinuous water body extraction. To address these issues enhance both completeness accuracy identification, this study proposes an advanced optimization method. Firstly, a linear feature enhancement algorithm for preliminary is introduced, which combines Frangi filtering with improved GA-OTSU segmentation technique. By thoroughly analyzing global high-resolution images, employed characteristics. Subsequently, thresholding applied segmentation, yielding initial results. In next stage, preserve original topology ensure stripe continuity, skeleton refinement utilized retain critical skeletal information about networks. Following this, endpoints identified using connectivity domain labeling algorithm, bounding rectangles potential disconnected regions delineated. discontinuities, shifted reconnected structural similarity index (SSIM) metrics, effectively bridging gaps network. Finally, nonlinear combined K-means clustering spectral inspection, small-area removal designed supplement some missed bodies remove non-water bodies. Experimental demonstrate that proposed method significantly improves regularization extraction, cases fine, narrow, features. The approach ensures more reliable consistent delineation, making extracted robust applicable practical hydrological environmental analyses.
Язык: Английский
Процитировано
0Environmental Earth Sciences, Год журнала: 2025, Номер 84(8)
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Water Resources Management, Год журнала: 2025, Номер unknown
Опубликована: Апрель 15, 2025
Язык: Английский
Процитировано
0