Earth Science Informatics, Год журнала: 2023, Номер 17(1), С. 193 - 209
Опубликована: Ноя. 24, 2023
Язык: Английский
Earth Science Informatics, Год журнала: 2023, Номер 17(1), С. 193 - 209
Опубликована: Ноя. 24, 2023
Язык: Английский
ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2025, Номер 226, С. 267 - 299
Опубликована: Май 26, 2025
Язык: Английский
Процитировано
0Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 408 - 423
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Deleted Journal, Год журнала: 2025, Номер 14(3), С. 69 - 87
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0International Journal of Remote Sensing, Год журнала: 2023, Номер 44(12), С. 3861 - 3891
Опубликована: Июнь 18, 2023
ABSTRACTFinding a means to extract water body information efficiently and accurately from high-resolution remote sensing images has been an important research direction in the field of extraction recent years. However, shadows buildings other obstacles interfere with accuracy extraction. To address this problem, paper proposes neural network method incorporating attention mechanism for This is based on U-Net convolutional adds squeeze-and-excitation module SENet, mechanism, downsampling process network. The weights feature maps so that focuses more features thus reduces shadow features, improving image segmentation. dropout batch normalization layers are also added improve generalization ability stability model. In paper, SE-CU-Net model presented overcome shadowing effect features. Using GF-2 Jiangsu province as data source, recognition results compared Dense-Net, Res-Net, Seg-Net, U-net, SVM, RF. Through comparison experiments, can not only better influence but it stronger effect. average ASCR, Precision, mIoU, OA, F1-Score kappa coefficients three tested areas reached 98.27%, 97.17%, 89.33%, 98.2%, 89.3% 0.883, respectively, significantly higher than six classical methods, verifying effectiveness overcoming research.KEYWORDS: extractiondeep learningshadows buildingsU-Netattention Disclosure statementNo potential conflict interest was reported by author(s).Additional informationFundingThis work Funded Key Laboratory Land Satellite Remote Sensing Application, Ministry Natural Resources People's Republic China(Grant No. KLSMNR-G202212)
Язык: Английский
Процитировано
8Earth Science Informatics, Год журнала: 2023, Номер 17(1), С. 193 - 209
Опубликована: Ноя. 24, 2023
Язык: Английский
Процитировано
8