Impact of Cascade Reservoir on the Sources of Organic Matter in Sediments of Lancang River DOI Creative Commons

Yufei Bao,

Meng Sun, Yuchun Wang

и другие.

iScience, Год журнала: 2024, Номер 28(1), С. 111681 - 111681

Опубликована: Дек. 25, 2024

The construction of dams to intercept natural rivers constitutes the most severe human activity influencing underlying surface. This study focuses on four cascade reservoirs Lancang River and explores their impact migration organic matter in sediments. research reveals significant spatial variations total carbon (TOC) nitrogen concentrations sediments reservoirs. isotopes indicate that terrigenous is main source TOC sediments, contributing an average 66.80%. Endogenous algal-derived second source, between 14.30% 32.91%. sources contributed from upstream are lowest, ranging 6.36% 15.33%. Our demonstrates may significantly alter processes material river basin ecosystem, particularly large reservoir which increased more endogenous matter.

Язык: Английский

Biodiversity conservation and management of lake wetlands based on the spatiotemporal evolution patterns of crane habitats DOI
Zihan Zhang, Cheng Wang,

Guanqing Gong

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 353, С. 120257 - 120257

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

6

Incorporating multi-timescale data in a single long short-term memory network to enhance reservoir-regulated streamflow simulation DOI
Laura Lang, Xing Gao, Yongkun Li

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132806 - 132806

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Stepwise variations of nutrients and organic matter in the fragmented Changjiang River by two big “dams”: One visible and one invisible DOI

Ailin Yao,

Yue Ming,

Mengyu Wang

и другие.

Continental Shelf Research, Год журнала: 2025, Номер unknown, С. 105438 - 105438

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Mercury budgets in the suspended particulate matters of the Yangtze River DOI

Dong Peng,

Jixuan Lyu, Zhengcheng Song

и другие.

Water Research, Год журнала: 2023, Номер 243, С. 120390 - 120390

Опубликована: Июль 22, 2023

Язык: Английский

Процитировано

8

Preferential remineralization of phosphorus from organic matter in river-dominated coastal sediments DOI
Zhongliang Lin, Li Liu, Ergang Lian

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 921, С. 170935 - 170935

Опубликована: Фев. 19, 2024

Язык: Английский

Процитировано

2

Variations in provenance and transport of terrestrial organic matter in the Changjiang River during the flood season DOI
Yameng Wang, Chenglong Wang, Chuchu Zhang

и другие.

CATENA, Год журнала: 2024, Номер 242, С. 108083 - 108083

Опубликована: Май 8, 2024

Язык: Английский

Процитировано

1

Dam regulation alters the spatio-temporal delivery of organic carbon along the Yellow River DOI
Taian Lu, Thomas S. Bianchi, Naishuang Bi

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 642, С. 131838 - 131838

Опубликована: Авг. 13, 2024

Язык: Английский

Процитировано

1

Enhancing the freshness of particulate organic carbon through the regulation of dam and river-lake interactions DOI
Junning Fan,

X. Shao,

Yiyun Wang

и другие.

Journal of Hydrology, Год журнала: 2024, Номер unknown, С. 132064 - 132064

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

1

Dam Regulation Reshapes the Spatio-Temporal Delivery of Organic Carbon Along the Yellow River DOI
Taian Lu, Thomas S. Bianchi,

Limin Hu

и другие.

Опубликована: Янв. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

Процитировано

0

Incorporating Multi-Temporal Scale Data in Mts-Lstm to Enhance Reservoir-Regulated Streamflow Simulation DOI
Laura Lang, Xing Gao, Yongkun Li

и другие.

Опубликована: Янв. 1, 2024

Water security and its sustainable management are critical to human survival livelihoods, especially under the dual pressures of climate change population growth. In response these challenges, an increasing number natural watersheds being regulated by dams reservoirs, introducing significant complexity streamflow modeling. However, operation man-made infrastructures, small-scale ones managed local governments, is highly flexible irregular, making them difficult investigate model thoroughly. Remote sensing products can reveal reservoir dynamics at larger spatial scales, providing valuable data for data-scarce catchments. This study aims evaluate a deep learning architecture, namely Multi-TimeScale Long Short-Term Memory (MTS-LSTM), which capable incorporating multi-source multi-timescale simulate streamflow. Furthermore, role remote sensing-derived monthly storage anomalies in MTS-LSTM enhancing daily reservoir-regulated simulation investigated. The results case on Yuanjiang River Basin demonstrated that effectively bridge gap between SWAT-simulated observed streamflow, attributed regulations. simulated satisfactory performance both (mean values Correlation Coefficients [CC]=0.92, Nash–Sutcliffe Efficiency [NSE]=0.81 Kling-Gupta [KGE]=0.80) CC=0.79, NSE=0.58 KGE=0.71) timescales. integration into has significantly enhanced simulation. mean CC, NSE, KGE simulations showed improvements 5%, 14%, respectively. led higher level accuracy than achieved naive LSTM model. presents systematic methodology enhance simulations, with particular focus regions limited hybrid cascade systems.

Язык: Английский

Процитировано

0