
Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 27, 2025
Язык: Английский
Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 27, 2025
Язык: Английский
Remote Sensing of Environment, Год журнала: 2024, Номер 312, С. 114319 - 114319
Опубликована: Июль 25, 2024
Язык: Английский
Процитировано
4Опубликована: Янв. 1, 2025
The limited availability and low accuracy of hydrological data severely influence the flood forecasting. To address this issue, paper proposes a new way to predict floods that combines CE-QUAL-W2 model for lakes' hydrodynamics with PINN physical information. is employed verify dynamic process water level volume in Lake during season. We input lake, verified by model, into model. Utilizing we can learn nonlinear patterns reservoir discharge from historical directly transform problem solving differential equations an optimization loss functions regular equations. real-time simulated also incorporated Xin-An-Jiang (XAJ) Long Short-Term Memory (LSTM) was compared results prediction performance obtained CE-QUAL-W2&PINN This study selects Luoma as research subject, choosing 35 representative events occurred between 1960 2022. show that, (1) events, relative errors observed values were all within 20%, indicating good simulation accuracy. (2) Compared LSTM XAJ models, demonstrates higher faster forecasting capabilities 3-hour period, achieving improvement approximately 30% both training testing. (3) overall determination coefficient CE-QUAL-W2&PIN stands at 0.919. error less than 10% flow periods.
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 27, 2025
Язык: Английский
Процитировано
0