
International Journal of Disaster Risk Reduction, Год журнала: 2024, Номер unknown, С. 105129 - 105129
Опубликована: Дек. 1, 2024
Язык: Английский
International Journal of Disaster Risk Reduction, Год журнала: 2024, Номер unknown, С. 105129 - 105129
Опубликована: Дек. 1, 2024
Язык: Английский
Water Resources Management, Год журнала: 2024, Номер 38(12), С. 4911 - 4931
Опубликована: Июнь 8, 2024
Язык: Английский
Процитировано
6Hydrology, Год журнала: 2024, Номер 11(9), С. 148 - 148
Опубликована: Сен. 11, 2024
Large Language Models (LLMs) combined with visual foundation models have demonstrated significant advancements, achieving intelligence levels comparable to human capabilities. This study analyzes the latest Multimodal LLMs (MLLMs), including Multimodal-GPT, GPT-4 Vision, Gemini, and LLaVa, a focus on hydrological applications such as flood management, water level monitoring, agricultural discharge, pollution management. We evaluated these MLLMs hydrology-specific tasks, testing their response generation real-time suitability in complex real-world scenarios. Prompts were designed enhance models’ inference capabilities contextual comprehension from images. Our findings reveal that Vision exceptional proficiency interpreting data, providing accurate assessments of severity quality. Additionally, showed potential various applications, drought prediction, streamflow forecasting, groundwater wetland conservation. These can optimize resource management by predicting rainfall, evaporation rates, soil moisture levels, thereby promoting sustainable practices. research provides valuable insights into advanced AI addressing challenges improving decision-making
Язык: Английский
Процитировано
5Journal of Hydrology Regional Studies, Год журнала: 2024, Номер 56, С. 101960 - 101960
Опубликована: Сен. 17, 2024
Язык: Английский
Процитировано
5Ecological Indicators, Год журнала: 2024, Номер 167, С. 112705 - 112705
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
4Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132750 - 132750
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Applied Sciences, Год журнала: 2025, Номер 15(5), С. 2517 - 2517
Опубликована: Фев. 26, 2025
Abnormal phenomena on urban roads, including uneven surfaces, garbage, traffic congestion, floods, fallen trees, fires, and accidents, present significant risks to public safety infrastructure, necessitating real-time monitoring early warning systems. This study develops Urban Road Anomaly Visual Large Language Models (URA-VLMs), a generative AI-based framework designed for the of diverse road anomalies. The InternVL was selected as foundational model due its adaptability this purpose. URA-VLMs features dedicated modules anomaly detection, flood depth estimation, level assessment, utilizing multi-step prompting retrieval-augmented generation (RAG) precise adaptive analysis. A comprehensive dataset 3034 annotated images depicting various scenarios developed evaluate models. Experimental results demonstrate system’s effectiveness, achieving an overall detection accuracy 93.20%, outperforming state-of-the-art models such InternVL2.5 ResNet34. By facilitating decision-making, AI approach offers scalable robust solution that contributes smarter, safer environment.
Язык: Английский
Процитировано
0Ecological Indicators, Год журнала: 2025, Номер 175, С. 113579 - 113579
Опубликована: Май 17, 2025
Язык: Английский
Процитировано
0Ecological Indicators, Год журнала: 2024, Номер 166, С. 112294 - 112294
Опубликована: Июнь 27, 2024
Язык: Английский
Процитировано
2Ecological Indicators, Год журнала: 2024, Номер 167, С. 112700 - 112700
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
1Engineering Reports, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 23, 2024
ABSTRACT Intensity‐duration‐frequency (IDF) models are considered one of the most important tools used in water resources projects, as well design and planning hydraulic structures such sewerage channels, bridges, culverts, road networks. This study aims to generate IDF curves for Iraqi city Babylon based on Indian Meteorological Department (IMD) empirical reduction formula choose optimal distribution that gives greatest rainfall intensity among three distributions this research (generalized extreme value, Log‐Pearson type III, Gumbel). examined daily data collected from Authority Meteorology Seismic Monitoring a period 32 years, 1991 2022. The IMD was calculate shorter durations (5, 10, 20, 30, 60, 120, 360, 720, 1440 min) custom return periods (2, 5, 25, 50, 100 years). To determine goodness fit distributions, Easy Fit 5.6 program applied with tests (the χ 2 test, Anderson–Darling Kolmogorov–Smirnov test). results showed all were acceptable both storm decreased increasing duration rainstorm. It also increases during large periods. Based criteria AIC BIC, LP‐3 chosen best simulate City using IDM formula.
Язык: Английский
Процитировано
1