
Journal of Hydrology, Год журнала: 2024, Номер unknown, С. 132269 - 132269
Опубликована: Окт. 1, 2024
Язык: Английский
Journal of Hydrology, Год журнала: 2024, Номер unknown, С. 132269 - 132269
Опубликована: Окт. 1, 2024
Язык: Английский
Results in Engineering, Год журнала: 2025, Номер unknown, С. 104254 - 104254
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
2Journal of Advances in Modeling Earth Systems, Год журнала: 2025, Номер 17(3)
Опубликована: Март 1, 2025
Abstract The Ensemble Streamflow Prediction (ESP) framework combines a probabilistic forecast structure with process‐based models for water supply predictions. However, require computationally intensive parameter estimation, increasing uncertainties and limiting usability. Motivated by the strong performance of deep learning models, we seek to assess whether Long Short‐Term Memory (LSTM) model can provide skillful forecasts replace within ESP framework. Given challenges in implicitly capturing snowpack dynamics LSTMs streamflow prediction, also evaluated added skill explicitly incorporating information improve hydrologic memory representation. LSTM‐ESPs were under four different scenarios: one excluding snow three including varied representations. LSTM trained using from 664 GAGES‐II basins during WY1983–2000. During testing period, WY2001–2010, 80% exhibited Nash‐Sutcliffe Efficiency (NSE) above 0.5 median NSE around 0.70, indicating satisfactory utility simulating seasonal supply. LSTM‐ESP then tested WY2011–2020 over 76 western US operational Natural Resources Conservation Services (NRCS) forecasts. A key finding is that high regions, simplified ablation assumptions performed worse than those snow, highlighting data do not consistently performance. incorporated past years' accumulation comparably NRCS better entirely. Overall, integrating an shows promise highlights important considerations forecasting.
Язык: Английский
Процитировано
0Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113543 - 113543
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Journal of Hydrology, Год журнала: 2024, Номер unknown, С. 132269 - 132269
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
2