Predicting Building Primary Energy Use Based on Machine Learning: Evidence from Portland DOI
Yin Junjia, Aidi Hizami Alias, Nuzul Azam Haron

и другие.

International Journal of Architectural Engineering Technology, Год журнала: 2024, Номер 11, С. 124 - 139

Опубликована: Дек. 28, 2024

Accurately predicting equivalent primary energy use (EPEU) in buildings is crucial for advancing energy-efficient design, optimizing operational strategies, and achieving sustainability goals the built environment. This study aims to develop reliable prediction models EPEU by leveraging a comprehensive high-quality dataset from Portland, USA. To achieve this, systematic machine learning framework adopted, encompassing feature selection, data preprocessing, model training, performance evaluation. Several state-of-the-art algorithms are applied, including Random Forest (RF), Gradient Boosting Decision Tree (GBDT), Back-Propagation Neural Networks (BP). These trained using key features such as building type, gross floor area, construction year, various characteristics that known significantly influence consumption patterns. The carefully cleaned normalized ensure generalizability minimize bias. Model assessed standard statistical metrics, coefficient of determination (R²), Mean Absolute Error (MAE), Root Squared (RMSE). Among tested models, ensemble methods—particularly RF GBDT—consistently outperform others terms accuracy, robustness, stability across different types. results this not only highlight potential tasks but also provide actionable insights architects, engineers, facility managers, policymakers. By identifying most influential variables employing effective predictive research supports data-driven decision-making processes aimed at improving performance.

Язык: Английский

Integrated Seasonal-Trend Decomposition Using Loess for Multi-Head Self-Attention Mechanism and Bidirectional Long Short-Term Memory Based Reference Evapotranspiration Prediction DOI
Zehai Gao, Zijun Gao, Xiaojun Zhang

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Dynamic UAV data fusion and deep learning for improved maize phenological-stage tracking DOI Creative Commons

Ziheng Feng,

Jiliang Zhao,

Liunan Suo

и другие.

The Crop Journal, Год журнала: 2025, Номер unknown

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

1

Coupled convolutional neural network with long short-term memory network for predicting lake water temperature DOI
Huajian Yang, Chuqiang Chen,

Xinhua Xue

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132878 - 132878

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

PRISMA-Guided Systematic Review on the Adoption of Artificial Intelligence and Embedded Systems for Smart Irrigation DOI
Nisrine Lachgar, Hajar Saikouk, Moad Essabbar

и другие.

Pure and Applied Geophysics, Год журнала: 2025, Номер unknown

Опубликована: Март 31, 2025

Язык: Английский

Процитировано

0

A deep learning based framework for enhanced reference evapotranspiration estimation: evaluating accuracy and forecasting strategies DOI Creative Commons

Suman Saurabh Sarkar,

Jatin Bedi, Sushma Jain

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 30, 2025

Affordable and efficient agricultural methods enhance crop yield water management by optimizing resources. Precise irrigation relies on accurate estimation of reference evapotranspiration (ETo). Numerous analytical empirical exist to compute ETo but these are costlier, requires time perform poorly under limited availability meteorological data. This study first evaluated the performances three deep learning sequential models-Long short-term memory (LSTM), Neural Basis Expansion Analysis for Time Series (N-BEATS) and, Temporal Convolutional Network model (TCN), predicting daily possessing temporal characteristics. In this TCN is considered as baseline be compared with other models. results, performed better, so it further utilized evaluate two strategies prediction that makes second objective paper. approach, historic data used predict future using which standard method. And, in recursive predicted climatological computed. required better planning data-scarce situations. The results demonstrate provided satisfactory performance Nash-Sutcliffe Efficiency (NSE) = 0.99, Theil U2 0.005, RMSE 0.092 MAE 0.048. Also, strategy, values computed found more than approach. Thus, comparative among architecture revealed outperformed LSTM N-BEATS models an method time-series could also assist precise resources scarcity.

Язык: Английский

Процитировано

0

Evaluating machine learning models and feature selection for reference evapotranspiration estimation in semi-arid regions: a case study in Doukkala, Morocco DOI

Zaid Belarbi,

Yacine El Younoussi

Theoretical and Applied Climatology, Год журнала: 2025, Номер 156(6)

Опубликована: Май 10, 2025

Язык: Английский

Процитировано

0

Identification of key meteorological factors influencing crop evapotranspiration using time‐frequency domain analysis DOI
Xing Yang, Miao Hou

Agronomy Journal, Год журнала: 2025, Номер 117(3)

Опубликована: Май 1, 2025

Abstract Crop evapotranspiration ( ET c ) is a critical factor for understanding water demand in agricultural systems, influencing irrigation scheduling and resource management. Identifying the meteorological factors crucial predicting variations needs optimizing plans. Traditional correlation analysis methods, such as Pearson correlation, often fail to capture time‐frequency , which limits their ability effectively identify primary factors. This study integrates Penman–Monteith model, analysis, wavelet vector projection length calculation method propose comprehensive approach identifying secondary influences on from perspective. Using rice Oryza sativa Gaoyou Irrigation District of Jiangsu Province, China, case study, research examines seven factors—including air temperature, relative humidity, rainfall, sunshine duration—along with four circulation indices, East Asian Summer Monsoon index ENSO index, 1980 2021. The results indicate that duration humidity are significant affecting high‐frequency low‐frequency signal components local respectively. Additionally, other factors, minimum show strong correlations signals within specific frequency bands, positioning them presents versatile framework can be extended areas hydrometeorology beyond.

Язык: Английский

Процитировано

0

Road damage prediction and intelligent maintenance methods based on stacking ensemble learning DOI
Jianxi Ou, Jianqin Zhang, Haoyu Li

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 66, С. 103466 - 103466

Опубликована: Май 27, 2025

Язык: Английский

Процитировано

0

Environmental influences on evapotranspiration in wheat-maize rotation systems under diverse hydrological regimes in the Guanzhong Plain, China DOI Creative Commons

Xuanang Liu,

Xiongbiao Peng,

Yao Li

и другие.

Agricultural Water Management, Год журнала: 2024, Номер 306, С. 109204 - 109204

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

1

A cross-language short text classification model based on BERT and multilayer collaborative convolutional neural network (MCNN) DOI Open Access
Qiong Hu

Molecular & cellular biomechanics, Год журнала: 2024, Номер 21(3), С. 739 - 739

Опубликована: Ноя. 25, 2024

This study focuses on cross-lingual short text classification tasks and aims to combine the advantages of BERT Multi-layer Collaborative Convolutional Neural Network (MCNN) build an efficient model. model provides rich semantic information for with its powerful language understanding bidirectional context modeling ability, while MCNN effectively extracts local global features in through multi-layer convolution structure collaborative working mechanism. In this study, output is used as input MCNN, further mine deep text, so realize high-precision text. The experimental results show that has achieved significant performance improvement dataset, which a new effective solution tasks.

Язык: Английский

Процитировано

0